Potential of automated image analysis for the measurement of vitiligo lesions
- PMID: 40893879
- PMCID: PMC12390786
- DOI: 10.3389/fmed.2025.1623408
Potential of automated image analysis for the measurement of vitiligo lesions
Keywords: AI; deep learning; dermatology; image analysis; vitiligo.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Similar articles
-
Image analysis systems to calculate the surface area of vitiligo lesions: A systematic review of measurement properties.Pigment Cell Melanoma Res. 2022 Sep;35(5):480-494. doi: 10.1111/pcmr.13056. Epub 2022 Jul 29. Pigment Cell Melanoma Res. 2022. PMID: 35822353
-
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.Br J Dermatol. 2024 Jul 16;191(2):261-266. doi: 10.1093/bjd/ljae142. Br J Dermatol. 2024. PMID: 38581445
-
[AI-based applications in medical image computing].Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2025 Aug;68(8):862-871. doi: 10.1007/s00103-025-04093-7. Epub 2025 Jul 2. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2025. PMID: 40600998 Free PMC article. Review. German.
-
Measurement properties of outcome measures for vitiligo. A systematic review.Arch Dermatol. 2012 Nov;148(11):1302-9. doi: 10.1001/archdermatol.2012.3065. Arch Dermatol. 2012. PMID: 22986764
-
Use of Deep Neural Networks in the Detection and Automated Classification of Lesions Using Clinical Images in Ophthalmology, Dermatology, and Oral Medicine-A Systematic Review.J Digit Imaging. 2023 Jun;36(3):1060-1070. doi: 10.1007/s10278-023-00775-3. Epub 2023 Jan 17. J Digit Imaging. 2023. PMID: 36650299 Free PMC article.
References
LinkOut - more resources
Full Text Sources