Printable biomaterials for 3D brain regenerative scaffolds: An in vivo biocompatibility assessment
- PMID: 40896181
- PMCID: PMC12395985
- DOI: 10.1016/j.reth.2025.08.008
Printable biomaterials for 3D brain regenerative scaffolds: An in vivo biocompatibility assessment
Abstract
Background: Brain regeneration after injury is a challenge being tackled by numerous therapeutic strategies in pre-clinical development. There is growing interest in scaffolds implanted in brain lesions. Developments in 3D printing offer the possibility of designing complex structures of varying compositions adapted to tissue anatomy.
Methods: This feasibility study assessed the cerebral biocompatibility of four bioeliminable Digital Light Processing (DLP) printed materials in the rat model: gelatin methacrylate (GelMA), poly(ethylene glycol)diacrylate (PEGDA) mixed with GelMA (PEGDA-GelMA), poly(trimethylene carbonate) trimethacrylate (PTMC-tMA) and an ABA triblock copolymer of polypropylene fumarate-b-poly γ-methyl ε-caprolactone-b-polypropylene fumarate (P(PF-MCL-PF)). Their tolerance was compared to that of polydioxanone Ethicon (PDSII), a neurosurgery suture component commonly used in clinical practice. A one-month MRI and behavioral follow-up aided in safety assessment.
Results: High-resolution T2 MRI imaging effectively captured the scaffold structures and demonstrated its non-invasive utility in monitoring degradability. PDSII served as a control of the acceptable inflammatory response to implantable foreign bodies. GelMA, PEGDA-GelMA and PTMC-tMA did not affect the permissive glial barrier, promoted cell migration, and neovascularization without additional perilesional microglial inflammation (median mean of 6.5 %, compared to 8.2 % for the PDSII control). However, the GelMA scaffold core was not colonized and allowed a limited neuronal progenitors recruitment. The rigidity of PTMC-tMA facilitated insertion, but posed histological issues. The brain hardly reacted to the P(PF-MCL-PF).
Conclusion: All these materials can serve as a basis for brain regeneration. PEGDA-GelMA emerged as a promising candidate for intracerebral implantation, combining biophysical and bioprinting advantages while maintaining an acceptable level of inflammation compared with clinically used suture, paving the way for innovative therapies.
Keywords: 3D printing; Brain repair; MRI; Scaffold; Tissue bioengineering.
© 2025 The Author(s).
Conflict of interest statement
Nothing to disclose.
Figures








Similar articles
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
In vivo biocompatibility assessment of 3D printed bioresorbable polymers for brain tissue regeneration. A feasibility study.Regen Ther. 2024 Oct 23;26:941-955. doi: 10.1016/j.reth.2024.10.004. eCollection 2024 Jun. Regen Ther. 2024. PMID: 39512739 Free PMC article.
-
3D Bioprinted Chondrogenic Gelatin Methacrylate-Poly(ethylene glycol) Diacrylate Composite Scaffolds for Intervertebral Disc Restoration.Int J Extrem Manuf. 2025 Feb;7(1):015507. doi: 10.1088/2631-7990/ad878e. Epub 2024 Nov 19. Int J Extrem Manuf. 2025. PMID: 40861018 Free PMC article.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Management of urinary stones by experts in stone disease (ESD 2025).Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085. Epub 2025 Jun 30. Arch Ital Urol Androl. 2025. PMID: 40583613 Review.
References
LinkOut - more resources
Full Text Sources