Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep;645(8082):1029-1038.
doi: 10.1038/s41586-025-09373-5. Epub 2025 Sep 3.

Genetic suppression features ABHD18 as a Barth syndrome therapeutic target

Affiliations

Genetic suppression features ABHD18 as a Barth syndrome therapeutic target

Sanna N Masud et al. Nature. 2025 Sep.

Abstract

Cardiolipin (CL) is the signature phospholipid of the inner mitochondrial membrane, where it stabilizes electron transport chain protein complexes1. The final step in CL biosynthesis relates to its remodelling: the exchange of nascent acyl chains with longer, unsaturated chains1. However, the enzyme responsible for cleaving nascent CL (nCL) has remained elusive. Here, we describe ABHD18 as a candidate deacylase in the CL biosynthesis pathway. Accordingly, ABHD18 converts CL into monolysocardiolipin (MLCL) in vitro, and its inactivation in cells and mice results in a shift to nCL in serum and tissues. Notably, ABHD18 deactivation rescues the mitochondrial defects in cells and the morbidity and mortality in mice associated with Barth syndrome. This rare genetic disease is characterized by the build-up of MLCL resulting from inactivating mutations in TAFAZZIN (TAZ), which encodes the final enzyme in the CL-remodelling cascade1. We also identified a selective, covalent, small-molecule inhibitor of ABHD18 that rescues TAZ mutant phenotypes in fibroblasts from human patients and in fish embryos. This study highlights a striking example of genetic suppression of a monogenic disease revealing a canonical enzyme in the CL biosynthesis pathway.

PubMed Disclaimer

Conflict of interest statement

Competing interests: S.M. serves on the Advisory Committee of Bristol Myers Squibb, Tenaya Therapeutics and Rocket Pharmaceuticals. The other authors declare no competing interests.

References

    1. Schlame, M. & Xu, Y. The function of tafazzin, a mitochondrial phospholipid-lysophospholipid acyltransferase. J. Mol. Biol. 432, 5043–5051 (2020). - PubMed - PMC - DOI
    1. Schlame, M. & Ren, M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 580, 5450–5455 (2006). - PubMed - DOI
    1. Hornby, B. et al. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome. Orphanet J. Rare Dis. 17, 336 (2022). - PubMed - PMC - DOI
    1. Kim, A. Y., Vernon, H., Manuel, R., Almuqbil, M. & Hornby, B. Quality of life in Barth syndrome. Ther. Adv. Rare Dis. 3, 26330040221093743 (2022). - PubMed - PMC
    1. Sabbah, H. N., Taylor, C. & Vernon, H. J. Temporal evolution of the heart failure phenotype in Barth syndrome and treatment with elamipretide. Future Cardiol. 19, 211–225 (2023). - PubMed - DOI

MeSH terms

LinkOut - more resources