Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 4;389(6764):1012-1015.
doi: 10.1126/science.adw1291. Epub 2025 Sep 4.

Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping

Jonas Buchli #  1 Brendan Tracey #  1 Tomislav Andric #  2   3 Christopher Wipf #  4 Yu Him Justin Chiu #  1 Matthias Lochbrunner #  1 Craig Donner #  1 Rana X Adhikari #  4 Jan Harms #  2   3 Iain Barr  1 Roland Hafner  1 Andrea Huber  1 Abbas Abdolmaleki  1 Charlie Beattie  1 Joseph Betzwieser  4 Serkan Cabi  1 Jonas Degrave  1 Yuzhu Dong  1 Leslie Fritz  1 Anchal Gupta  4 Oliver Groth  1 Sandy Huang  1 Tamara Norman  1 Hannah Openshaw  1 Jameson Rollins  4 Greg Thornton  1 George van den Driessche  1 Markus Wulfmeier  1 Pushmeet Kohli  1 Martin Riedmiller  1 LIGO Instrument Team‡R Abbott  5 I Abouelfettouh  6 R X Adhikari  5 A Ananyeva  5 S Appert  5 S K Apple  7 K Arai  5 N Aritomi  6 S M Aston  8 M Ball  9 S W Ballmer  10 D Barker  6 L Barsotti  11 B K Berger  12 J Betzwieser  8 D Bhattacharjee  13   14 G Billingsley  5 S Biscans  11 C D Blair  8   15 N Bode  16   17 E Bonilla  12 V Bossilkov  8 A Branch  8 A F Brooks  5 D D Brown  18 J Bryant  19 C Cahillane  10 H Cao  11 E Capote  6 F Clara  6 J Collins  8 C M Compton  6 R Cottingham  8 D C Coyne  5 R Crouch  6 J Csizmazia  6 A Cumming  20 L P Dartez  8 D Davis  5 N Demos  11 E Dohmen  6 J C Driggers  6 S E Dwyer  6 A Effer  8 A Ejlli  21 T Etzel  5 M Evans  11 J Feicht  5 R Frey  9 W Frischhertz  8 P Fritschel  11 V V Frolov  8 M Fuentes-Garcia  5 P Fulda  22 M Fyffe  8 D Ganapathy  11 B Gateley  6 T Gayer  10 J A Giaime  8   23 K D Giardina  8 J Glanzer  5 E Goetz  24 R Goetz  22 A W Goodwin-Jones  5   15 S Gras  11 C Gray  6 D Griffith  5 H Grote  21 T Guidry  6 J Gurs  25 E D Hall  11 J Hanks  6 J Hanson  10 M C Heintze  10 A F Helmling-Cornell  9 N A Holland  26 D Hoyland  19 H Y Huang  27 Y Inoue  27 A L James  5 A Jennings  6 W Jia  11 D H Jones  28 H B Kabagoz  8 S Karat  5 S Karki  14 M Kasprzack  5 K Kawabe  6 N Kijbunchoo  18 P J King  6 J S Kissel  6 K Komori  29 A Kontos  30 Rahul Kumar  6 K Kuns  11 M Landry  6 B Lantz  12 M Laxen  16 K Lee  30 M Lesovsky  5 F Llamas Villarreal  31 M Lormand  8 H A Loughlin  11 R Macas  32 M MacInnis  11 C N Makarem  5 B Mannix  9 G L Mansell  10 R M Martin  33 K Mason  11 F Matichard  11 N Mavalvala  11 N Maxwell  6 G McCarrol  8 R McCarthy  6 D E Mc-Clelland  28 S McCormick  8 T McRae  28 F Mera  6 E L Merilh  8 F Meylahn  16   17 R Mittleman  11 D Moraru  6 G Moreno  6 A Mullavey  8 M Nakano  5 T J N Nelson  8 A Neunzert  6 J Notte  33 J Oberling  6 T O'Hanlon  10 C Osthelder  5 D J Ottaway  18 H Overmier  8 W Parker  8 O Patane  6 A Pele  5 H Pham  8 M Pirello  6 J Pullin  23 V Quetschke  31 K E Ramire  8 K Ransom  8 J Reyes  33 J W Richardson  34 M Robinson  6 J G Rollins  5 C L Romel  6 J H Romie  10 M P Ross  7 K Ryan  6 T Sadecki  6 A Sanchez  6 E J Sanchez  5 L E Sanchez  5 R L Savage  6 D Schaetzl  5 M G Schiworski  10 R Schnabel  25 R M S Schofield  9 E Schwartz  12 D Sellers  10 T Shaffer  6 R W Short  6 D Sigg  6 B J J Slagmolen  28 C Soike  6 S Soni  11 V Srivastava  10 L Sun  28 D B Tanner  22 M Thomas  8 P Thomas  6 K A Thorne  8 M R Todd  10 C I Torrie  5 G Traylor  8 A S Ubhi  19 G Vajente  5 J Vanosky  6 A Vecchio  19 P J Veitch  18 A M Vibhute  6 E R G von Reis  6 J Warner  6 B Weaver  6 R Weiss  11 C Whittle  5 B Willke  16   17 C C Wipf  5 J L Wright  28 V A Xu  11 H Yamamoto  5 L Zhang  5 M E Zucker  5   11
Affiliations

Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping

Jonas Buchli et al. Science. .

Abstract

Improved low-frequency sensitivity of gravitational wave observatories would unlock study of intermediate-mass black hole mergers and binary black hole eccentricity and provide early warnings for multimessenger observations of binary neutron star mergers. Today's mirror stabilization control injects harmful noise, constituting a major obstacle to sensitivity improvements. We eliminated this noise through Deep Loop Shaping, a reinforcement learning method using frequency domain rewards. We proved our methodology on the LIGO Livingston Observatory (LLO). Our controller reduced control noise in the 10- to 30-hertz band by over 30x and up to 100x in subbands, surpassing the design goal motivated by the quantum limit. These results highlight the potential of Deep Loop Shaping to improve current and future gravitational wave observatories and, more broadly, instrumentation and control systems.

PubMed Disclaimer

LinkOut - more resources