Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping
Affiliations
- 1 Google DeepMind, London, UK.
- 2 Gran Sasso Science Institute (GSSI), L'Aquila, Italy.
- 3 Laboratori Nazionali del Gran Sasso, Assergi (INFN), Italy.
- 4 LIGO Laboratory, Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA, USA.
- 5 LIGO Laboratory, California Institute of Technology, Pasadena, CA, USA.
- 6 LIGO Hanford Observatory, Richland, WA, USA.
- 7 University of Washington, Seattle, WA, USA.
- 8 LIGO Livingston Observatory, Livingston, LA, USA.
- 9 University of Oregon, Eugene, OR, USA.
- 10 Syracuse University, Syracuse, NY, USA.
- 11 LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- 12 Stanford University, Stanford, CA, USA.
- 13 Kenyon College, Gambier, OH, USA.
- 14 Missouri University of Science and Technology, Rolla, MO, USA.
- 15 OzGrav, University of Western Australia, Crawley, Australia.
- 16 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Hannover, Germany.
- 17 Leibniz Universität Hannover, Hannover, Germany.
- 18 OzGrav, University of Adelaide, Adelaide, Australia.
- 19 University of Birmingham, Birmingham, UK.
- 20 SUPA, University of Glasgow, Glasgow, UK.
- 21 Cardiff University, Cardiff, UK.
- 22 University of Florida, Gainesville, FL, USA.
- 23 Louisiana State University, Baton Rouge, LA, USA.
- 24 University of British Columbia, Vancouver, BC, Canada.
- 25 Universität Hamburg, Hamburg, Germany.
- 26 Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
- 27 National Central University, Taoyuan City, Taiwan.
- 28 OzGrav, Australian National University, Canberra, Australia.
- 29 University of Tokyo, Tokyo, Japan.
- 30 Sungkyunkwan University, Seoul, South Korea.
- 31 The University of Texas Rio Grande Valley, Brownsville, TX, USA.
- 32 University of Portsmouth, Portsmouth, UK.
- 33 Montclair State University, Montclair, NJ, USA.
- 34 University of California, Riverside, CA, USA.
- PMID: 40906851
- DOI: 10.1126/science.adw1291
Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping
Authors
Affiliations
- 1 Google DeepMind, London, UK.
- 2 Gran Sasso Science Institute (GSSI), L'Aquila, Italy.
- 3 Laboratori Nazionali del Gran Sasso, Assergi (INFN), Italy.
- 4 LIGO Laboratory, Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA, USA.
- 5 LIGO Laboratory, California Institute of Technology, Pasadena, CA, USA.
- 6 LIGO Hanford Observatory, Richland, WA, USA.
- 7 University of Washington, Seattle, WA, USA.
- 8 LIGO Livingston Observatory, Livingston, LA, USA.
- 9 University of Oregon, Eugene, OR, USA.
- 10 Syracuse University, Syracuse, NY, USA.
- 11 LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- 12 Stanford University, Stanford, CA, USA.
- 13 Kenyon College, Gambier, OH, USA.
- 14 Missouri University of Science and Technology, Rolla, MO, USA.
- 15 OzGrav, University of Western Australia, Crawley, Australia.
- 16 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Hannover, Germany.
- 17 Leibniz Universität Hannover, Hannover, Germany.
- 18 OzGrav, University of Adelaide, Adelaide, Australia.
- 19 University of Birmingham, Birmingham, UK.
- 20 SUPA, University of Glasgow, Glasgow, UK.
- 21 Cardiff University, Cardiff, UK.
- 22 University of Florida, Gainesville, FL, USA.
- 23 Louisiana State University, Baton Rouge, LA, USA.
- 24 University of British Columbia, Vancouver, BC, Canada.
- 25 Universität Hamburg, Hamburg, Germany.
- 26 Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
- 27 National Central University, Taoyuan City, Taiwan.
- 28 OzGrav, Australian National University, Canberra, Australia.
- 29 University of Tokyo, Tokyo, Japan.
- 30 Sungkyunkwan University, Seoul, South Korea.
- 31 The University of Texas Rio Grande Valley, Brownsville, TX, USA.
- 32 University of Portsmouth, Portsmouth, UK.
- 33 Montclair State University, Montclair, NJ, USA.
- 34 University of California, Riverside, CA, USA.
- PMID: 40906851
- DOI: 10.1126/science.adw1291
Abstract
Improved low-frequency sensitivity of gravitational wave observatories would unlock study of intermediate-mass black hole mergers and binary black hole eccentricity and provide early warnings for multimessenger observations of binary neutron star mergers. Today's mirror stabilization control injects harmful noise, constituting a major obstacle to sensitivity improvements. We eliminated this noise through Deep Loop Shaping, a reinforcement learning method using frequency domain rewards. We proved our methodology on the LIGO Livingston Observatory (LLO). Our controller reduced control noise in the 10- to 30-hertz band by over 30x and up to 100x in subbands, surpassing the design goal motivated by the quantum limit. These results highlight the potential of Deep Loop Shaping to improve current and future gravitational wave observatories and, more broadly, instrumentation and control systems.
LinkOut - more resources
Full Text Sources