Automated Kidney Tumor Segmentation in CT Images Using Deep Learning: A Multi-Stage Approach
- PMID: 40908232
- DOI: 10.1016/j.acra.2025.08.020
Automated Kidney Tumor Segmentation in CT Images Using Deep Learning: A Multi-Stage Approach
Abstract
Rationale and objectives: Computed tomography (CT) remains the primary modality for assessing renal tumors; however, tumor identification and segmentation rely heavily on manual interpretation by clinicians, which is time-consuming and subject to inter-observer variability. The heterogeneity of tumor appearance and indistinct margins further complicate accurate delineation, impacting histopathological classification, treatment planning, and prognostic assessment. There is a pressing clinical need for an automated segmentation tool to enhance diagnostic workflows and support clinical decision-making with results that are reliable, accurate, and reproducible.
Materials and methods: This study developed a fully automated pipeline based on the DeepMedic 3D convolutional neural network for the segmentation of kidneys and renal tumors through multi-scale feature extraction. The model was trained and evaluated using 5-fold cross-validation on a dataset of 382 contrast-enhanced CT scans manually annotated by experienced physicians. Image preprocessing included Hounsfield unit conversion, windowing, 3D reconstruction, and voxel resampling. Post-processing was also employed to refine output masks and improve model generalizability.
Results: The proposed model achieved high performance in kidney segmentation, with an average Dice coefficient of 93.82 ± 1.38%, precision of 94.86 ± 1.59%, and recall of 93.66 ± 1.77%. In renal tumor segmentation, the model attained a Dice coefficient of 88.19 ± 1.24%, precision of 90.36 ± 1.90%, and recall of 88.23 ± 2.02%. Visual comparisons with ground truth annotations confirmed the clinical relevance and accuracy of the predictions.
Conclusion: The proposed DeepMedic-based framework demonstrates robust, accurate segmentation of kidneys and renal tumors on CT images. With its potential for real-time application, this model could enhance diagnostic efficiency and treatment planning in renal oncology.
Keywords: Computed Tomography; Deep Learning; Renal Tumor; Segmentation.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
LinkOut - more resources
Full Text Sources