Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 29;30(8):36412.
doi: 10.31083/FBL36412.

Potential Mechanism Connecting Preeclampsia to Autism Spectrum Disorder in Offspring: The Role of Microglial Abnormalities

Affiliations
Free article
Review

Potential Mechanism Connecting Preeclampsia to Autism Spectrum Disorder in Offspring: The Role of Microglial Abnormalities

Ying Zhu et al. Front Biosci (Landmark Ed). .
Free article

Abstract

Preeclampsia (PE) is a serious complication of pregnancy characterized by chronic inflammation and immune dysregulation, which significantly increases the risk of neurodevelopmental disorders in offspring, including the autism spectrum disorder (ASD). This review investigated the potential mechanisms linking PE to ASD, with a particular focus on the role of microglial abnormalities. Epidemiological studies have revealed that prenatal exposure to PE raised the risk of ASD, with affected offspring showing increased odds ratios. Microglia, the prime resident immune cells of the central nervous system (CNS), are critical for normal neurodevelopment, influencing processes such as neural stem cell (NSC) proliferation, synaptic pruning, and normal function of the neural circuit. Early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE) may have an impact on the microglia abnormality and ASD through not exactly same pathway. Postmortem studies of ASD have further revealed increased microglial density, altered microglial morphology, and upregulated inflammatory markers in key brain regions, including the hippocampus and prefrontal cortex. Understanding the complex processes and potential mechanisms between EOPE, LOPE, microglial abnormalities, and ASD pathogenesis may highlight the importance of early screening and intervention for children born to mothers with PE. Targeting microglia-mediated pathways may offer novel therapeutic strategies to reduce the risk of ASD in these vulnerable populations.

Keywords: autism spectrum disorder; microglia; neurodevelopmental disorders; pre-eclampsia; prenatal exposure delayed effects.

PubMed Disclaimer