Mechanistic Insights and Translational Therapeutics of Neurovascular Unit Dysregulation in Vascular Cognitive Impairment
- PMID: 40919631
- DOI: 10.31083/JIN40091
Mechanistic Insights and Translational Therapeutics of Neurovascular Unit Dysregulation in Vascular Cognitive Impairment
Abstract
Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex. However, contemporary research has gone beyond structural vascular damage, highlighting the neurovascular unit (NVU) as a critical mediator. Emerging evidence demonstrates that cerebral endothelial cells within the NVU not only regulate oxygen and nutrient transport but also orchestrate neuroinflammatory signaling and neurovascular coupling (NVC). Crucially, endothelial dysfunction initiates a self-perpetuating cycle of NVU dysregulation characterized by: (1) NVC impairment through diminished nitric oxide bioavailability and calcium signaling defects, (2) blood-brain barrier (BBB) breakdown via tight-junction protein degradation and pericyte detachment, and (3) neuroinflammation driven by endothelial-derived cytokine release and leukocyte infiltration. By integrating recent advances in NVU biology, we have established a framework to inform clinical strategies for early diagnosis and targeted therapies, which we outline in this review. Moreover, proactive management of vascular risk factors (e.g., hypertension, diabetes) in presymptomatic stages may mitigate the progression from vascular injury to irreversible dementia, underscoring its preventive potential. These insights reinforce the idea that preserving NVU integrity represents a pivotal approach to mitigating the global dementia burden.
Keywords: brain vascular disorders; clinical progression; cognitive impairments; neurovascular coupling; pathology.
© 2025 The Author(s). Published by IMR Press.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
