Temozolomide-Derived AIC Is Incorporated into Purine Synthesis in Glioblastoma
- PMID: 40925600
- PMCID: PMC12541799
- DOI: 10.1021/acs.chemrestox.5c00196
Temozolomide-Derived AIC Is Incorporated into Purine Synthesis in Glioblastoma
Abstract
Glioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Temozolomide (TMZ), a standard-of-care chemotherapeutic agent, exerts its cytotoxicity by alkylating DNA, which triggers a DNA damage response and depletes ATP and NAD+. However, TMZ also releases the byproduct 4-amino-5-imidazole carboxamide (AIC), which is believed to be a benign metabolite. We considered the possibility that AIC from TMZ could enter the de novo purine synthesis pathway, contributing to AMP and NAD+ synthesis and thus potentially antagonizing the anticancer activity of TMZ. The purpose of this article is to determine if AIC from TMZ can be incorporated into cellular purines. Using mass spectrometry with isotope-labeled TMZ, we demonstrate that the AIC derived from TMZ is incorporated into AMP and NAD+ in glioblastoma cell lines. Further, we performed an analysis of publicly available transcriptomic data from the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Our analyses demonstrate that de novo purine synthesis is upregulated in GBM relative to the normal brain. Collectively, our findings demonstrate that a drug metabolite of TMZ, AIC, can be incorporated into de novo purine synthesis, which is upregulated in GBM.
Figures
References
-
- Stupp R., Mason W. P., van den Bent M. J., Weller M., Fisher B., Taphoorn M. J., Belanger K., Brandes A. A., Marosi C., Bogdahn U., Curschmann J., Janzer R. C., Ludwin S. K., Gorlia T., Allgeier A., Lacombe D., Cairncross J. G., Eisenhauer E., Mirimanoff R. O.. Radiotherapy plus concomitant and adjuvant Temozolomide for glioblastoma. N. Engl. J. Med. 2005;352(10):987–996. doi: 10.1056/NEJMoa043330. - DOI - PubMed
-
- Stupp R., Hegi M. E., Mason W. P., van den Bent M. J., Taphoorn M. J., Janzer R. C., Ludwin S. K., Allgeier A., Fisher B., Belanger K., Hau P., Brandes A. A., Gijtenbeek J., Marosi C., Vecht C. J., Mokhtari K., Wesseling P., Villa S., Eisenhauer E., Gorlia T., Weller M., Lacombe D., Cairncross J. G., Mirimanoff R. O.. Effects of radiotherapy with concomitant and adjuvant Temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–466. doi: 10.1016/S1470-2045(09)70025-7. - DOI - PubMed
-
- Stupp R., Taillibert S., Kanner A., Read W., Steinberg D., Lhermitte B., Toms S., Idbaih A., Ahluwalia M. S., Fink K., Di Meco F., Lieberman F., Zhu J. J., Stragliotto G., Tran D., Brem S., Hottinger A., Kirson E. D., Lavy-Shahaf G., Weinberg U., Kim C. Y., Paek S. H., Nicholas G., Bruna J., Hirte H., Weller M., Palti Y., Hegi M. E., Ram Z.. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA. 2017;318(23):2306–2316. doi: 10.1001/jama.2017.18718. - DOI - PMC - PubMed
-
- Fazzari F. G. T., Rose F., Pauls M., Guay E., Ibrahim M. F. K., Basulaiman B., Tu M., Hutton B., Nicholas G., Ng T. L.. The current landscape of systemic therapy for recurrent glioblastoma: A systematic review of randomized-controlled trials. Crit. Rev. Oncol. Hematol. 2022;169:103540. doi: 10.1016/j.critrevonc.2021.103540. - DOI - PubMed
-
- Herbener V. J., Burster T., Goreth A., Pruss M., von Bandemer H., Baisch T., Fitzel R., Siegelin M. D., Karpel-Massler G., Debatin K. M., Westhoff M. A., Strobel H.. Considering the Experimental use of Temozolomide in Glioblastoma Research. Biomedicines. 2020;8(6):151. doi: 10.3390/biomedicines8060151. - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
