Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 9;15(39):32424-32430.
doi: 10.1039/d5ra05242d. eCollection 2025 Sep 5.

Base mediated approach for the synthesis of deoxybenzoins using γ-aryl-β-ketoesters and benzoyl chlorides

Affiliations

Base mediated approach for the synthesis of deoxybenzoins using γ-aryl-β-ketoesters and benzoyl chlorides

Shailendra Singh Choudhary et al. RSC Adv. .

Abstract

This study introduces a one-pot, transition metal-free strategy for synthesizing deoxybenzoins, overcoming the challenges of conventional methods. The reaction involves dual acylation of γ-aryl β-keto esters using K2CO3 in dioxane at 90 °C, followed by a concerted transformation to form deoxybenzoin. The protocol operates under mild conditions, tolerates a broad range of substrates, and produces minimal by-products, making it a practical, scalable alternative for accessing pharmaceutically relevant deoxybenzoins.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Fig. 1
Fig. 1. Biologically active moieties containing deoxybenzoin building block.
Fig. 2
Fig. 2. Synthetic utility of deoxybenzoins.
Scheme 1
Scheme 1. Previous reports and present work.
Fig. 3
Fig. 3. 2-Chloropyridines, which were unproductive under the optimized reaction conditions.
Scheme 2
Scheme 2. Gram-scale synthesis of compound 3a.
Scheme 3
Scheme 3. Control experiment.
Scheme 4
Scheme 4. Proposed reaction mechanism.

References

    1. Preininger V. Šimánek V. Gašić O. Šantavý F. Dolejš L. Phytochemistry. 1973;12:2513–2515.
    2. Lamblin M. Couture A. Deniau E. Grandclaudon P. Org. Biomol. Chem. 2006;5:1466–1471. - PubMed
    3. Rey J.-P. Levesque J. Pousset J.-L. Roblot F. J. Chromatogr. A. 1991;587:314–317.
    4. Boonyaketgoson S. Rukachaisirikul V. Phongpaichit S. Trisuwan K. Phytochem. Lett. 2019;31:96–100.
    5. Driowya M. Saber A. Marzag H. Demange L. Bougrin K. Benhida R. Molecules. 2016;21:1032. - PMC - PubMed
    6. Kaufmann D. Fünfschilling P. C. Beutler U. Hoehn P. Lohse O. Zaugg W. Tetrahedron Lett. 2004;45:5275–5278.
    7. Haasio K., in International Review of Neurobiology, ed. E. Nissinen, Academic Press, 2010, pp. 163–189 - PubMed
    8. Luo Y. Li H.-Q. Zhou Y. Li Z.-L. Yan T. Zhu H.-L. ChemMedChem. 2010;5(7):1110–1116. - PubMed
    1. Fokialakis N. Lambrinidis G. Mitsiou D. J. Aligiannis N. Mitakou S. Skaltsounis A.-L. Pratsinis H. Mikros E. Alexis M. N. Chem. Biol. 2004;11:397–406. - PubMed
    2. Xiao Z.-P. Shi D.-H. Li H.-Q. Zhang L.-N. Xu C. Zhu H.-L. Bioorg. Med. Chem. 2007;15:3703–3710. - PubMed
    3. Li H.-Q. Xue J.-Y. Shi L. Gui S.-Y. Zhu H.-L. Eur. J. Med. Chem. 2008;43:662–667. - PubMed
    4. Li H.-Q. Luo Y. Lv P.-C. Shi L. Liu C.-H. Zhu H.-L. Bioorg. Med. Chem. Lett. 2010;20:2025–2028. - PubMed
    1. Moffett R. B. Strube R. E. Skaletzky L. J. Med. Chem. 1971;14:1088–1100. - PubMed
    2. Zou Y. Zhang S. Wen X. Wang G. Sun Y. Liu S. Peng T. Gao Y. Wang L. Tetrahedron Lett. 2017;58:2835–2837.
    3. Ellzey K. A. Ranganathan T. Zilberman J. Coughlin E. B. Farris R. J. Emrick T. Macromolecules. 2006;39:3553–3558.
    1. Longstreet A. R. Jo M. Chandler R. R. Hanson K. Zhan N. Hrudka J. J. Mattoussi H. Shatruk M. McQuade D. T. J. Am. Chem. Soc. 2014;136:15493–15496. - PubMed
    2. Torán R. Vila C. Sanz-Marco A. Muñoz M. C. Pedro J. R. Blay G. Eur. J. Org Chem. 2020;2020:627–630.
    3. Gao J. Ren Z.-G. Lang J.-P. Chin. Chem. Lett. 2017;28:1087–1092.
    4. Fernandes A. J. Giri R. Houk K. N. Katayev D. Angew. Chem., Int. Ed. 2024;63:e202318377. - PubMed
    5. Wang X. Qi F. Jiang Z. Yan M. Xu L. Dyes Pigm. 2021;186:108999.
    6. Zhu X. Guo R. Zhang X. Gao Y. Jia Q. Wang Y. Adv. Synth. Catal. 2020;362(15):3190–3201.
    1. Roslan I. I. Ng K.-H. Wu J.-E. Chuah G.-K. Jaenicke S. J. Org. Chem. 2016;81(19):9167–9174. - PubMed
    2. Roslan I. I. Ng K.-H. Chuah G.-K. Jaenicke S. Eur. J. Org Chem. 2017;2017:704–709.
    3. Mao S. Zhu X.-Q. Gao Y.-R. Guo D.-D. Wang Y.-Q. Chem. - Eur. J. 2015;21:11335–11339. - PubMed
    4. Wang Z.-Y. Liu Q. Wang K.-K. Liu M. Han Y. Sun A. Ma X. Asian J. Org. Chem. 2021;10:766–770.
    5. Shashank A. B. Karthik S. Madhavachary R. Ramachary D. B. Chem. - Eur. J. 2014;20:16877–16881. - PubMed
    6. Zhang C. Xu Z. Zhang L. Jiao N. Tetrahedron. 2012;68:5258–5262.
    7. Shen Z.-L. Xu X.-P. Ji S.-J. J. Org. Chem. 2010;75:1162–1167. - PubMed
    8. Potukuchi H. K. Spork A. P. Donohoe T. J. Org. Biomol. Chem. 2015;13:4367–4373. - PMC - PubMed
    9. Sivanandan S. T. Shaji A. Ibnusaud I. Seechurn C. C. C. J. Colacot T. J. Eur. J. Org Chem. 2015;2015:38–49.

LinkOut - more resources