Glycolysis-Histone Lactylation Crosstalk Drives TXNIP-NLRP3-Mediated PANoptosome Assembly and PANoptosis Activation Underlying Diabetic Retinopathy Pathogenesis
- PMID: 40959205
- PMCID: PMC12433895
- DOI: 10.1002/mco2.70351
Glycolysis-Histone Lactylation Crosstalk Drives TXNIP-NLRP3-Mediated PANoptosome Assembly and PANoptosis Activation Underlying Diabetic Retinopathy Pathogenesis
Abstract
Diabetic retinopathy (DR), a major cause of vision loss in adults, involves aberrant metabolism and inflammation. This study investigated the interplay between glycolysis, histone lactylation, and PANoptosis in DR using human retinal pigment epithelial (RPE) cells under high glucose and diabetic mouse models. Results demonstrated a positive feedback loop where enhanced glycolysis increased histone lactylation, which in turn further promoted glycolysis. This cycle activated the expression of thioredoxin interacting protein (TXNIP) and NOD-like receptor thermal protein domain associated protein 3 (NLRP3), leading to PANoptosome formation and triggering PANoptosis, a coordinated cell death pathway contributing to DR pathology. Crucially, experiments manipulating TXNIP expression (via RNAi or overexpression) confirmed its central role in linking histone lactylation to NLRP3 activation and PANoptosome assembly. Importantly, inhibiting glycolysis or downregulating TXNIP successfully reduced histone lactylation, suppressed PANoptosome formation, and alleviated PANoptosis. These findings establish that the glycolysis-histone lactylation axis, mediated by TXNIP/NLRP3 signaling, drives PANoptosis in RPE cells through PANoptosome formation, playing a critical role in DR development. Targeting this specific pathway presents a promising new therapeutic strategy for diabetic retinopathy.
Keywords: PANoptosis; diabetic retinopathy; glycolysis; histone lactylation; thioredoxin interacting protein.
© 2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Stitt A. W., Curtis T. M., Chen M., et al., “The Progress in Understanding and Treatment of Diabetic Retinopathy,” Progress in Retinal and Eye Research 51 (2016): 156–186. - PubMed
-
- Hammes H. P., “Diabetic Retinopathy: Hyperglycaemia, Oxidative Stress and Beyond,” Diabetologia 61, no. 1 (2018): 29–38. - PubMed
-
- Martin P. M., Roon P., Van Ells T. K., Ganapathy V., Smith S. B., “Death of Retinal Neurons in Streptozotocin‐induced Diabetic Mice,” Investigative Ophthalmology & Visual Science 45, no. 9 (2004): 3330–3336. - PubMed
LinkOut - more resources
Full Text Sources