Repeated head trauma causes neuron loss and inflammation in young athletes
- PMID: 40963024
- PMCID: PMC12589125
- DOI: 10.1038/s41586-025-09534-6
Repeated head trauma causes neuron loss and inflammation in young athletes
Abstract
Repetitive head impacts (RHIs) sustained from contact sports are the largest risk factor for chronic traumatic encephalopathy (CTE)1-4. Currently, CTE can only be diagnosed after death and the events that trigger initial hyperphosphorylated tau (p-tau) deposition remain unclear2. Furthermore, the symptoms endorsed by young individuals are not fully explained by the extent of p-tau deposition2, severely hampering therapeutic interventions. Here we observed a multicellular response prior to the onset of CTE p-tau pathology that correlates with number of years of RHI exposure in young people (less than 51 years of age) with RHI exposure, the majority of whom played American football. Leveraging single-nucleus RNA sequencing of tissue from 8 control individuals, 9 RHI-exposed individuals and 11 individuals with low-stage CTE, we identify SPP1-expressing inflammatory microglia, angiogenic and inflamed endothelial cells, astrocytosis and altered synaptic gene expression in those exposed to RHI. We also observe a significant loss of cortical sulcus layer 2/3 neurons independent of p-tau pathology. Finally, we identify TGFβ1 as a potential signal that mediates microglia-endothelial cell cross talk. These results provide robust evidence that multiple years of RHI is sufficient to induce lasting cellular alterations that may underlie p-tau deposition and help explain the early pathogenesis in young former contact sport athletes. Furthermore, these data identify specific cellular responses to RHI that may direct future identification of diagnostic and therapeutic strategies for CTE.
© 2025. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Figures
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
