Modeling bistable dynamics arising from macrophage-tumor interactions in the tumor microenvironment
- PMID: 40967507
- DOI: 10.1016/j.mbs.2025.109534
Modeling bistable dynamics arising from macrophage-tumor interactions in the tumor microenvironment
Abstract
Macrophages in the tumor microenvironment (TME), known as tumor-associated macrophages (TAMs), originate primarily from circulating monocytes that differentiate under the influence of tumor-derived signals. Within the TME, naïve macrophages can adopt either a pro-inflammatory, anti-tumor (M1-like) or anti-inflammatory, pro-tumor (M2-like) phenotype. These phenotypic shifts significantly affect tumor progression, making TAMs attractive targets for therapeutic intervention aimed at blocking recruitment, promoting anti-tumor polarization, or disrupting tumor-macrophage interactions. In this study, we develop a mathematical model capturing the temporal dynamics of tumor volume alongside populations of naïve, M1-like, M2-like, and mixed (M1/M2) phenotype TAMs. The model incorporates the bidirectional influence between tumor development and macrophage polarization. Through numerical simulations with different parameter sets, our tumor-macrophage population model exhibits the emergence of bistability, demonstrating the system becomes more controllable, responsive to perturbations, and sensitive to immunotherapy. We conduct the bifurcation as well as global sensitivity analyses to identify regions of bistability for tumor dynamics in the parameter space and the impact of sensitive parameters on TME. These results are then linked to treatment strategies that may effectively induce transitions from high to low tumor burden.
Keywords: Bifurcation; Bistability; Macrophage polarization; Mathematical modeling; Tumor microenvironment.
Copyright © 2025 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the submitted original paper.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
