Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Dec;36(4):1081-1097.
doi: 10.1007/s00335-025-10157-5. Epub 2025 Sep 19.

Identification and functional analysis of Rattus norvegicus Mammary carcinoma susceptibility 1b (Mcs1b) nominated variants

Affiliations

Identification and functional analysis of Rattus norvegicus Mammary carcinoma susceptibility 1b (Mcs1b) nominated variants

Jennifer Sanders et al. Mamm Genome. 2025 Dec.

Abstract

Rattus norvegicus (a.k.a. laboratory rat or Brown Rat) Mammary carcinoma susceptibility 1b (Mcs1b) is a concordant ortholog of a female breast cancer risk allele at human 5q11.2. Previously, Mcs1b was delimited to a 1.8 Mb interval of RNO2 and Map3k1 along with Mier3 were determined to be Mcs1b-nonminated genes. This conclusion was based on shared synteny with human 5q11.2 and differential gene expression between cancer susceptible and Mcs1b resistant mammary glands. In this study, targeted genome sequencing of cancer susceptible and Mcs1b resistance associated alleles was used to identify three Mcs1b-nominated quantitative trait nucleotides (QTNs) in noncoding DNA. In vitro approaches, luciferase activity and electromobility shift assays, were used to suggest these variants reside in potential gene regulatory elements. One of these variants, UL-A74-SNV-17, resulted in luciferase activities that were 2.6× higher for the susceptibility associated variant compared to the resistance associated variant. These results recapitulated Mcs1b nominated gene transcript level differences between Mcs1b genotypes in mammary epithelial cells (MECs), where Map3k1 and Mier3 were 1.5- to 2.0-fold higher for the susceptible genotype compared to the Mcs1b resistance-associated genotype. Evidence of a chromatin loop in Mcs1b that may position Mcs1b QTNs near distal genes was uncovered using chromosome confirmation capture (3C). Rat Mcs1b was also functionally characterized by determining that Mcs1b genotype had effects on the amount of luminal MECs in adult mammary glands. In conclusion, UL-A74-SNV-17 is a priority candidate Mcs1b QTN with a hypothesized mechanistic role in the differential regulation of Mcs1b nominated genes, Mier3 and Map3k1.

PubMed Disclaimer

Conflict of interest statement

Declarations. Conflict of interest: The authors declare no competing interests.

References

    1. Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS, Apicella C, Smith LD, Hammet F, Southey MC, Van ’t Veer LJ, de Groot R, Smit VT, Fasching PA, Beckmann MW, Jud S, Ekici AB, Hartmann A, Hein A, Schulz-Wendtland R, Burwinkel B, Marme F, Schneeweiss A, Sinn HP, Sohn C, Tchatchou S, Bojesen SE, Nordestgaard BG, Flyger H, Orsted DD, Kaur-Knudsen D, Milne RL, Perez JI, Zamora P, Rodriguez, Benitez J, Brauch H, Justenhoven C, Ko YD, Hamann U, Fischer HP, Bruning T, Pesch B, Chang-Claude J, Wang-Gohrke S, Bremer M, Karstens JH, Hillemanns P, Dork T, Nevanlinna HA, Heikkinen T, Heikkila P, Blomqvist C, Aittomaki K, Aaltonen K, Lindblom A, Margolin S, Mannermaa A, Kosma VM, Kauppinen JM, Kataja V, Auvinen P, Eskelinen M, Soini Y, Chenevix-Trench G, Spurdle AB, Beesley J, Chen X, Holland H, Lambrechts D, Claes B, Vandorpe T, Neven P, Wildiers H, Flesch-Janys D, Hein R, Loning T, Kosel M, Fredericksen ZS, Wang X, Giles GG, Baglietto L, Severi G, McLean C, Haiman CA, Henderson BE, Le Marchand L, Kolonel LN, Alnaes GG, Kristensen V, Borresen-Dale AL, Hunter DJ, Hankinson SE, Andrulis IL, Mulligan AM, O’Malley FP, Devilee P, Huijts PE, Tollenaar RA, Van Asperen CJ, Seynaeve CS, Chanock SJ, Lissowska J, Brinton L, Peplonska B, Figueroa J, Yang XR, Hooning MJ, Hollestelle A, Oldenburg RA, Jager A, Kriege M, Ozturk B, van Leenders GJ, Hall P, Czene K, Humphreys K, Liu J, Cox A, Connley D, Cramp HE, Cross SS, Balasubramanian SP, Reed MW, Dunning AM, Easton DF, Humphreys MK, Caldas C, Blows F, Driver K, Provenzano E, Lubinski J, Jakubowska A, Huzarski T, Byrski T, Cybulski C, Gorski B, Gronwald J, Brennan P, Sangrajrang S, Gaborieau V, Shen CY, Hsiung CN, Yu JC, Chen ST, Hsu GC, Hou MF, Huang CS, Anton-Culver H, Ziogas A, Pharoah PD, Garcia-Closas M (2011) Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20(16):3289–3303
    1. Bustamante Eduardo M, Keller I, Schuster N, Aebi S, Jaggi R (2023) Molecular characterization of breast cancer cell pools with normal or reduced ability to respond to progesterone: a study based on RNA-seq. J Genet Eng Biotechnol 21(1):81 - DOI - PubMed - PMC
    1. Cezard T, Cunningham F, Hunt SE, Koylass B, Kumar N, Saunders G, Shen A, Silva AF, Tsukanov K, Venkataraman S, Flicek P, Parkinson H, Keane TM (2022) The European variation archive: a FAIR resource of genomic variation for all species. Nucleic Acids Res 50(D1):D1216–D1220 - DOI - PubMed
    1. Consortium, U (2025) UniProt: the universal protein knowledgebase in 2025. Nucleic Acids Res 53(D1):D609–D617 - DOI
    1. Database, Rat Genome Variant Visualizer, Rat Genome Browser. M. Medical College of Wisconsin, Wisconsin, Medical College of Wisconsin, Milwaukee

LinkOut - more resources