Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Oct 27;54(21):9849-9875.
doi: 10.1039/d5cs00554j.

Organic interface enhanced electrocatalysis

Affiliations
Review

Organic interface enhanced electrocatalysis

Qing-Ling Hong et al. Chem Soc Rev. .

Abstract

Organic interface engineering has attracted increasing attention as an effective approach to tailoring electrode surfaces and improving electrocatalytic performance, while a comprehensive understanding of its underlying mechanisms remains limited. This review provides an in-depth examination of the design strategies and functional roles of organic interfaces in electrocatalysis. We categorize organic interfaces into three representative types: (i) small organic molecule-functionalized surfaces, (ii) polymer-modified electrodes, and (iii) self-assembled monolayers (SAMs). Various fabrication methods are discussed, alongside the diverse interaction mechanisms-such as covalent bonding, coordination effects, and van der Waals interactions-that govern the interface between organic components and electrode materials. We then focus on how organic interfaces contribute to catalytic enhancement by modulating local atomic arrangements, tailoring electronic structures, and constructing favorable reaction microenvironments. These interfacial modifications offer new opportunities to optimize catalytic activity, selectivity, and operational stability across a range of electrochemical transformations. Finally, we outline key challenges and future perspectives in applying organic interface strategies to practical energy conversion technologies. This review aims to bridge existing knowledge gaps and offer conceptual and methodological guidance for the rational development and design of high-performance electrocatalysts through molecular-level interface engineering.

PubMed Disclaimer

LinkOut - more resources