Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 22:db250492.
doi: 10.2337/db25-0492. Online ahead of print.

Combined Weight Loss and Exercise Training Alters Skeletal Muscle Subcellular Lipid Localization and Intermuscular Adipose Tissue Cellular Composition

Affiliations

Combined Weight Loss and Exercise Training Alters Skeletal Muscle Subcellular Lipid Localization and Intermuscular Adipose Tissue Cellular Composition

Karin Zemski Berry et al. Diabetes. .

Abstract

Subcellular lipid accumulation and intermuscular adipose tissue (IMAT) accumulation are associated with insulin resistance, but the impact of combined weight loss and exercise training on localization of lipids and IMAT cellular composition is not known. Twenty-one adults with obesity (18 female and 3 male; 46 ± 2 years; 35.0 ± 0.9 kg/m2) completed a 3-month supervised weight loss and exercise training intervention. Insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp, and basal and insulin-stimulated vastus lateralis biopsies were collected pre- and postintervention. After the intervention, body weight and body fat decreased (11 ± 1% and 9 ± 1%, respectively), while VO2 peak and insulin sensitivity increased (14 ± 3% and 68 ± 14%, respectively). Lipidomics revealed reduced sarcolemmal and nuclear triglycerides, with unchanged whole-muscle triglycerides. Whole-muscle diacylglycerols increased because of increased nuclear 1,2-diacylglycerols without PKCε, PKCθ, or PKCδ activation. Whole-muscle sphingolipid levels increased because of cytosolic accumulation. Single-nuclei RNA sequencing showed altered IMAT cellular composition, including increased fibro-adipogenic progenitors, vascular cells, and macrophages, and decreased preadipocytes. Bulk muscle RNA sequencing indicated upregulation of genes related to muscle remodeling and cellular respiration, and there were changes in the relationship between nuclear diacylglycerols and gene expression postintervention. These findings dissociate improvements in insulin sensitivity from total muscle diacylglycerol and sphingolipid levels and highlight roles for subcellular lipid redistribution and IMAT remodeling in insulin sensitization.

Article highlights: Evaluation of subcellular fractionated muscle revealed decreases in sarcolemmal and nuclear triglycerides and increases in nuclear diacylglycerols and cytosolic sphingolipids postintervention. Weight loss revealed alteration in the cellular composition of intermuscular adipose tissue and upregulation of genes related to muscle remodeling and cellular respiration. These findings dissociate improvements in insulin sensitivity from total muscle 1,2-diacylglycerol and sphingolipid levels and highlight roles of intermuscular adipose tissue remodeling for enhanced insulin sensitivity.

PubMed Disclaimer

LinkOut - more resources