Two-carbon ring expansion of bicyclic aziridines to oxazocines via aryne insertion into a σ C-N bond
- PMID: 40988692
- PMCID: PMC12453046
- DOI: 10.1039/d5sc04998a
Two-carbon ring expansion of bicyclic aziridines to oxazocines via aryne insertion into a σ C-N bond
Erratum in
-
Correction: Two-carbon ring expansion of bicyclic aziridines to oxazocines via aryne insertion into a σ C-N bond.Chem Sci. 2025 Oct 27;16(43):20613. doi: 10.1039/d5sc90235e. eCollection 2025 Nov 5. Chem Sci. 2025. PMID: 41158549 Free PMC article.
Abstract
Oxazocines are medium-sized N,O-heterocycles that are motifs in reported bioactive compounds; thus, methods for their rapid preparation and functionalization are of significant interest, particularly to increase their representation in current drug libraries. In this work, a mild method to access oxazocines through aryne insertion into the σ C-N bond of carbamate-tethered bicyclic aziridines is described. This work unlocks a complementary reactivity mode for bicyclic aziridines via a two-carbon ring expansion, which preserves both the strained ring and its stereochemical information for further modifications. Mechanistic studies of the reaction pathway using Density Functional Theory computations indicate that oxazocine formation via nucleophilic acyl substitution of the carbonyl group of the carbamate is kinetically preferred over alternative products arising from aziridine ring-opening pathways.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
References
-
- Vitaku E. Smith D. T. Njardarson J. T. J. Med. Chem. 2014;57:10257–10274. doi: 10.1021/jm501100b. - DOI - PubMed
- Heravi M. M. Zadsirjan V. RSC Adv. 2020;10:44247–44311. doi: 10.1039/D0RA09198G. - DOI - PMC - PubMed
- Bhutani P. Joshi G. Raja N. Bachhav N. Rajanna P. K. Bhutani H. Paul A. T. Kumar R. J. Med. Chem. 2021;64:2339–2381. doi: 10.1021/acs.jmedchem.0c01786. - DOI - PubMed
- Jimenez D. G. Poongavanam V. Kihlberg J. J. Med. Chem. 2023;66:5377–5396. doi: 10.1021/acs.jmedchem.3c00134. - DOI - PMC - PubMed
-
- Romines K. R. Watenpaugh K. D. Tomich P. K. Howe W. J. Morris J. K. Lovasz K. D. Mulichak A. M. Finzel B. C. Lynn J. C. Horng M.-M. Schwende F. J. Ruwart M. J. Zipp G. L. Chong K.-T. Dolak L. A. Toth L. N. Howard G. M. Rush B. D. Wilkinson K. F. Possert P. L. Dalga R. J. Hinshaw R. R. J. Med. Chem. 1995;38:1884–1891. doi: 10.1021/jm00011a008. - DOI - PubMed
- Bauer R. Wenderski T. Tan D. Nat. Chem. Biol. 2013;9:21–29. doi: 10.1038/nchembio.1130. - DOI - PMC - PubMed
- Lee H. Kim J. Koh M. Molecules. 2024;29:1562. doi: 10.3390/molecules29071562. - DOI - PMC - PubMed
- Du Y. Semghouli A. Wang Q. Mei H. Kiss L. Baecker D. Soloshonok V. A. Han J. Arch. Pharm. 2025;358:e2400890. doi: 10.1002/ardp.202400890. - DOI - PMC - PubMed
-
- Alfonsi P. Adam F. Passard A. Guignard B. Sessler D. Chauvin M. Anesthesiology. 2004;100:37–43. doi: 10.1097/00000542-200401000-00010. - DOI - PMC - PubMed
- Martin G. D. A. Tan L. T. Jensen P. R. Dimayuga R. E. Fairchild C. R. Raventos-Suarez C. Fenical W. J. Nat. Prod. 2007;70:1406–1409. doi: 10.1021/np060621r. - DOI - PubMed
- Scott J. P. Alam M. Bremeyer N. Goodyear A. Lam T. Wilson R. D. Zhou G. Org. Process Res. Dev. 2011;15:1116–1123. doi: 10.1021/op200002u. - DOI
- Dandapani S. Germain A. R. Jewett I. le Quement S. Marie J.-C. Muncipinto G. Duvall J. R. Carmody L. C. Perez J. R. Engel J. C. Gut J. Kellar D. Siqueira-Neto J. L. McKerrow J. H. Kaiser M. Rodriguez A. Palmer M. A. Foley M. Schreiber S. L. Munoz B. ACS Med. Chem. Lett. 2014;5:149–153. doi: 10.1021/ml400403u. - DOI - PMC - PubMed
- Cañeque T. Gomes F. Mai T. T. Maestri G. Malacria M. Rodriguez R. Nat. Chem. 2015;7:744–751. doi: 10.1038/nchem.2302. - DOI - PMC - PubMed
- Parrino B. Cascioferro S. Carbone D. Cirrincione G. Diana P. Adv. Heterocycl. Chem. 2020;132:135–239. doi: 10.1016/bs.aihch.2019.11.004. - DOI
-
- Pflantz R. Sluiter J. Krička M. Saak W. Hoenke C. Christoffers J. Eur. J. Org Chem. 2009;2009:5431–5436. doi: 10.1002/ejoc.200900825. - DOI
- Liu G. Huang W. Wang J. Liu X. Yang J. Zhang Y. Geng Y. Tan W. Zhang A. J. Med. Chem. 2017;60:8218–8245. doi: 10.1021/acs.jmedchem.7b01185. - DOI - PubMed
- Barve I. J. Thikekar T. U. Sun C.-M. Org. Lett. 2017;19:2370–2373. doi: 10.1021/acs.orglett.7b00907. - DOI - PubMed
- Lam H. Qureshi Z. Wegmann M. Lautens M. Angew. Chem., Int. Ed. 2018;57:16185–16189. doi: 10.1002/anie.201810760. - DOI - PubMed
- Choury M. Lopes A. B. Blond G. Gulea M. Molecules. 2020;25:3147. doi: 10.3390/molecules25143147. - DOI - PMC - PubMed
- Li Q. Pan R. Wang M. Yao H. Lin A. Org. Lett. 2021;23:2292–2297. doi: 10.1021/acs.orglett.1c00420. - DOI - PubMed
- Kaur N., 8-Membered Heterocycle Synthesis, Elsevier, Amsterdam, 1st edn, 2023
- Yin L. Zhang Z. Huang S. Wang Z. Huang C. J. Org. Chem. 2024;89:13629–13640. doi: 10.1021/acs.joc.4c01827. - DOI - PubMed
- Li J. Dong Z. Zhao C. New J. Chem. 2024;48:4645–4669. doi: 10.1039/D3NJ05655D. - DOI
- Meng Q. Meng Y. Liu Q. Yu B. Li Z.-J. Li E.-Q. Zhang J. Adv. Sci. 2024;11:2402170. doi: 10.1002/advs.202402170. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
