Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 24;8(1):1352.
doi: 10.1038/s42003-025-08674-9.

Association of genetic scores related to insulin resistance with neurological outcomes in ancestrally diverse cohorts from the Trans-Omics for Precision Medicine (TOPMed) program

Chloé Sarnowski  1 Yixin Zhang  2 Farah Ammous  3   4 Lincoln M P Shade  5 Daniel DiCorpo  2 Xueqiu Jian  6 Donna K Arnett  7 Thomas R Austin  8   9 Alexa Beiser  2   10   11 Joshua C Bis  8   12 John Blangero  13 Eric Boerwinkle  14   15 Jan Bressler  14 Joanne E Curran  13 Charles S DeCarli  16 Harsha Doddapaneni  15 Josée Dupuis  2   17 David W Fardo  5   18 Jose C Florez  19   20   21   22 Stacey Gabriel  23 Richard A Gibbs  15 David C Glahn  24   25   26 Namrata Gupta  23 Hector M González  27 Kevin A González  27 Konstantinos Hatzikotoulas  28 Kathleen M Hayden  29 Susan R Heckbert  8   9 Bertha Hidalgo  30 Alicia Huerta-Chagoya  21 Timothy M Hughes  31 Sharon L R Kardia  3 Charles L Kooperberg  32 Lenore J Launer  33 W T Longstreth Jr  9   34 T2DGGI consortiumMAGIC consortiumRavi Mandla  21   35 Rasika A Mathias  36 Andrew P Morris  28   37   38 Thomas H Mosley  39 Ilya M Nasrallah  40 Paul Nyquist  41 Bruce M Psaty  8   9   12   42 Qibin Qi  43   44 Laura M Raffield  45 Nigel W Rayner  28 Alexander P Reiner  9   32 Claudia L Satizabal  6   10   11 Elizabeth Selvin  46 Magdalena D R Sevilla-Gonzalez  21   22   47 Albert V Smith  48 Jennifer A Smith  3   4 Kirk Smith  19   20   21 Beverly M Snively  49 Lorraine Southam  28 Tamar Sofer  50   51   52 Ken Suzuki  37   53   54 Henry J Taylor  55   56   57 Miriam S Udler  19   20   21   22 Karine A Viaud-Martinez  58 Sylvia Wassertheil-Smoller  44 Alexis C Wood  59 Lisa R Yanek  36 Xianyong Yin  48   60 Alisa K Manning  21   22   47 Jerome I Rotter  61 Stephen S Rich  62 James B Meigs  21   22   63 Myriam Fornage  14   64 Sudha Seshadri  6   10   11 Alanna C Morrison  14 TOPMed Diabetes working groupand the TOPMed Neurocognitive working group
Collaborators, Affiliations

Association of genetic scores related to insulin resistance with neurological outcomes in ancestrally diverse cohorts from the Trans-Omics for Precision Medicine (TOPMed) program

Chloé Sarnowski et al. Commun Biol. .

Abstract

To better characterize the potential biological mechanisms underlying insulin resistance (IR) and dementia, we derive cross-population and population specific polygenic scores [PSs] for fasting insulin and IR-related partitioned PSs [pPSs]. We conduct a cross-sectional study of the associations of these genetic scores with neurological outcomes in >17k participants (36% men, mean age 55 yrs) from the Trans-Omics for Precision Medicine (TOPMed) program (50% Non-Hispanic White, 23% Black/African American, 21% Hispanic/Latino American, and 4% Asian American). We report significant negative associations (P < 0.002) of the cross-population (P = 1.3 × 10-5) and European (PEA = 3.0 × 10-8) fasting insulin PSs with total cranial volume, and of a metabolic syndrome European PS with general cognitive function (BEA = -0.13, PEA = 0.0002) and lateral ventricular volume (BEA = 0.09, PEA = 0.002). We identify suggestive negative associations (P < 0.007) of metabolic syndrome and obesity pPSs with general cognitive function, and of lipodystrophy pPSs with total cranial volume. A higher genetic predisposition to IR is associated with lower brain size, and a genetic predisposition to specific IR-related type 2 diabetes subtypes, such as metabolic syndrome and mechanisms of IR mediated through obesity and lipodystrophy, is potentially involved in cognitive decline.

PubMed Disclaimer

Conflict of interest statement

Competing interests: L.M.R. and S.S.R. are consultants for the TOPMed Administrative Coordinating Center (through Westat). B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. All the other authors declare that they have no competing interests. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institute on Aging; or the National Institutes of Health. Ethics approval and consent to participate: All study participants provided informed consent, and each study was approved by their respective institutional review boards.

Figures

Fig. 1
Fig. 1. Analytic strategy to derive polygenic scores related to insulin resistance in TOPMed.
LD Linkage Disequilibrium, T2D Type 2 Diabetes, FI Fasting Insulin, MtS Metabolic Syndrome, ALP alkaline phosphatase. EUR/AFR/AMR denotes LD reference panels provided by PRS-CSx and constructed using the UK Biobank data (Pan UKBB European ancestry, African ancestry, and Admixed American ancestry); Left-side panel has been adapted from Ruan et al..

References

    1. Karlsson, I. K. et al. Measuring heritable contributions to Alzheimer’s disease: polygenic risk score analysis with twins. Brain Commun.4, fcab308 (2022). - DOI - PMC - PubMed
    1. Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry63, 168–174 (2006). - DOI - PubMed
    1. Seshadri, S. et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA303, 1832–1840 (2010). - DOI - PMC - PubMed
    1. Pasquier, F., Boulogne, A., Leys, D. & Fontaine, P. Diabetes mellitus and dementia. Diabetes Metab.32, 403–414 (2006). - DOI - PubMed
    1. Whitmer, R. A. Type 2 diabetes and risk of cognitive impairment and dementia. Curr. Neurol. Neurosci. Rep.7, 373–380 (2007). - DOI - PubMed