Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 25:e0190425.
doi: 10.1128/mbio.01904-25. Online ahead of print.

Assessment of ecological fidelity of human microbiome-associated mice in observational studies and an interventional trial

Affiliations
Free article

Assessment of ecological fidelity of human microbiome-associated mice in observational studies and an interventional trial

Matthew K Wong et al. mBio. .
Free article

Abstract

Composition and function of the gut microbiome are associated with diverse health conditions and treatment responses. Human microbiota-associated (HMA) mouse models are used to establish causal links for these associations but have important limitations. We assessed the fidelity of HMA mouse models in recapitulating ecological responses to a microbial consortium using stools collected from a human clinical trial. HMA mice were generated using different routes of consortium exposure, and their ecological features were compared to human donors by metagenomic sequencing. HMA mice resembled other mice more than their respective human donors in gut microbial composition and function, with taxa including Akkermansia muciniphila and Bacteroides spp. enriched in mouse recipients. A limited repertoire of microbes was able to engraft into HMA mice regardless of route of consortium exposure. In publicly available HMA mouse data sets from four distinct health conditions, we confirmed our observation that a taxonomically restricted set of microbes reproducibly engrafts in HMA mice and observed that stool microbiome composition of HMA mice was more like other mice than their human donor. Our data suggest that HMA mice are limited models for assessing the ecological impact of microbial consortia, with ecological effects in HMA mice being more strongly associated with host species than donor stool ecology or ecological responses to treatment in humans. Comparisons to published studies suggest this may be due to comparatively large host-species effects that overshadow ecological effects of treatments in humans that HMA models aim to recapitulate.IMPORTANCEHMA mice are models that better represent human gut ecology compared to conventional laboratory mice and are commonly used to test the effects of the gut microbiome on disease or treatment response. We evaluated the fidelity of using HMA mice as avatars of ecological response to a human microbial consortium, Microbial Ecosystem Therapeutic 4. Our results show that HMA mice in our cohort and across other published studies are more similar to each other than the human donors or inoculum they are derived from and harbor a taxonomically restricted gut microbiome. These findings highlight the limitations of HMA mice in evaluating the ecological effects of complex human microbiome-targeting interventions, such as microbial consortia.

Keywords: fecal microbiota transplant; gut microbiome; human microbiota-associated mice; microbial consortia.

PubMed Disclaimer

Update of

LinkOut - more resources