Cell-type-specific DNA methylation dynamics in the prenatal and postnatal human cortex
- PMID: 40997811
- DOI: 10.1016/j.xgen.2025.101010
Cell-type-specific DNA methylation dynamics in the prenatal and postnatal human cortex
Abstract
The human cortex undergoes extensive epigenetic remodeling during development, although the precise temporal and cell-type-specific dynamics of DNA methylation remain incompletely understood. In this study, we profiled genome-wide DNA methylation across human cortex tissue from donors aged 6 post-conception weeks to 108 years of age. We observed widespread, developmentally regulated changes in DNA methylation, with pronounced shifts occurring during early- and mid-gestation that were distinct from age-associated modifications in the postnatal cortex. Using fluorescence-activated nuclei sorting, we optimized a protocol for the isolation of SATB2-positive neuronal nuclei, enabling the identification of cell-type-specific DNA methylation trajectories in the developing cortex. Developmentally dynamic DNA methylation sites were significantly enriched near genes implicated in autism and schizophrenia, supporting a role for epigenetic dysregulation in neurodevelopmental conditions. Our findings underscore the prenatal period as a critical window of epigenomic plasticity in the brain with important implications for understanding the genetic basis of neurodevelopmental phenotypes.
Keywords: DNA methylation; aging; autism; brain; cortex; development; epigenetics; fetal; neuronal; schizophrenia.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
LinkOut - more resources
Full Text Sources