Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 23:127152.
doi: 10.1016/j.envpol.2025.127152. Online ahead of print.

Route-dependent toxicodynamics of 6PPD-quinone in mussels: Mechanical resilience trades off with subcellular injury and metabolic disruption

Affiliations

Route-dependent toxicodynamics of 6PPD-quinone in mussels: Mechanical resilience trades off with subcellular injury and metabolic disruption

Yiming Gao et al. Environ Pollut. .

Abstract

The byssal thread, a mussel-secreted proteinaceous anchor critical for underwater adhesion, represents a vital adaptation for survival in dynamic marine environments but faces vulnerability to pollutants. This study examines how the tire-derived contaminant 6PPD-quinone (6PPD-Q) impacts the byssal defense system of Mytilus coruscus via waterborne and dietary exposure. Experiments evaluated byssal production, mechanical traits, foot histology, and transcriptomic profiles. Waterborne 6PPD-Q induced a paradoxical enhancement: increased thread count/diameter and adhesion strength coexisted with progressive foot tissue damage, evidenced by histopathology and dysregulated ribosomal/DNA repair pathways. Dietary exposure, conversely, disrupted nutrient metabolism and immune responses, with transcriptomes diverging sharply from waterborne cases. KEGG analysis revealed route-specific toxicity: waterborne exposure activated nuclear DNA damage pathways, while dietary exposure triggered lysosomal/antigen-processing mechanisms. Solvent controls confirmed 6PPD-Q specificity. These findings unveil a dual paradox where 6PPD-Q simultaneously enhances mechanical resilience and inflicts subcellular harm, with toxicodynamics governed by exposure route. The trade-off between structural fortification and physiological impairment highlights complex pollutant interactions in mussels, emphasizing the need for exposure pathway-specific assessments in managing aquaculture sustainability amid coastal contamination. This work advances understanding of anthropogenic pollutant impacts on marine bivalve adaptive strategies and ecosystem health.

Keywords: 6-PPD quinone; Byssus; Mytilus coruscus; Trophic ecotoxicology; dietary exposure.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest ☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

LinkOut - more resources