Millikelvin Intracellular Nanothermometry with Nanodiamonds
- PMID: 41017629
- DOI: 10.1002/advs.202511670
Millikelvin Intracellular Nanothermometry with Nanodiamonds
Abstract
Nanothermometry within living cells is an important endeavor in physics, as the mechanisms of heat diffusion in such complex and dynamic environments remain poorly understood. In biology, nanothermometry may offer new insights into cellular biology and open new avenues for drug-discovery. Previous studies using various nanothermometers have reported temperature variations of up to several Kelvins during metabolic stimulation, but these findings have remained controversial as they appear to contradict the law of heat diffusion in the presence of heating rates that are consistent with physiological parameters. Here, nanodiamond nanothermometry are reported inside macrophages by measuring the optically detected magnetic resonance spectra of nitrogen-vacancy centers. The spectra are analyzed when cells are metabolically stimulated and after cell death. It is shown that, in the experimental setting, the apparent spin resonant spectral shifts can be misinterpreted as temperature changes but are actually caused by electrical field changes on the nanodiamond's surface. These artifacts are addressed with optimized nanodiamonds and a more robust sensing protocol to measure temperature inside cells with precision down to 100 mK (52 mK outside cells). No significant temperature changes upon metabolic stimulation are found, a finding consistent with the implementation of the heat diffusion law and expected physiological heating rates.
Keywords: diamond; nanothermometry; nitrogen‐vacancy; quantum sensing; thermodynamics of life.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
References
-
- J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Nat. Methods 2020, 17, 967.
-
- A. G. Kruglov, A. M. Romshin, A. B. Nikiforova, A. Plotnikova, I. I. Vlasov, Int. J. Mol. Sci. 2023, 24, 23.
-
- J.‐M. Yang, H. Yang, L. Lin, ACS Nano 2011, 5, 5067.
-
- K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, Nat. Commun. 2012, 3, 705.
-
- L. Wu, F. Chen, X. Chang, L. Li, X. Yin, C. Li, F. Wang, C. Li, Q. Xu, H. Zhuang, N. Gu, Z.‐C. Hua, J. Am. Chem. Soc. 2022, 144, 19396.
Grants and funding
- CRC1279 C04/Deutsche Forschungsgemeinschaft
- QuantERA project ExtraQt 499241080/Deutsche Forschungsgemeinschaft
- SFB1279/Deutsche Forschungsgemeinschaft
- 386028944/Deutsche Forschungsgemeinschaft
- 387073854/Deutsche Forschungsgemeinschaft
- 445243414/Deutsche Forschungsgemeinschaft
- 491245864/Deutsche Forschungsgemeinschaft
- 499424854/Deutsche Forschungsgemeinschaft
- 532771161/Deutsche Forschungsgemeinschaft
- 546850640/Deutsche Forschungsgemeinschaft
- STE925/4 1/Deutsche Forschungsgemeinschaft
- 554644981(JST DFG ASPIRE)/Deutsche Forschungsgemeinschaft
- HyperQ 856432/ERC_/European Research Council/International
- Future cluster QSens 03ZU1110FF,03ZU1110FE,03ZK110AB/Bundesministerium für Bildung und Forschung
- EXTRASENS 13N16935/Bundesministerium für Bildung und Forschung
- DIAQNOS 13N16463/Bundesministerium für Bildung und Forschung
- quNV2.0 13N16707/Bundesministerium für Bildung und Forschung
- QuMicro 101046911/European Union Horizon
- CQuENS 101135359/European Union Horizon
- QCIRCLE 101059999/European Union Horizon
- FLORIN 101086142/European Union Horizon
- TBVAC Horizon/European Union Horizon
- EP/Z533191/1/Engineering and Physical Sciences Research Council
- WSM383LQS/Validierungsförderung EFRE 2021 2027
- CZSCenterQPhoton/Carl-Zeiss-Stiftung
- QPhotonInnovationProject/Carl-Zeiss-Stiftung
- GBMF12328/Gordon and Betty Moore Foundation
- DOI10.37807/GBMF12328/Gordon and Betty Moore Foundation
- G 2023 21130/Alfred P. Sloan Foundation
- Center for Integrated Quantum Science and Technology