Structural Bias Effect On Azidation at C‑1 and C‑2 of Alkyl-3,6-anhydro‑d‑hexofuranosides: Synthetic Approach to Natural Products and Derivatives
- PMID: 41018583
- PMCID: PMC12461306
- DOI: 10.1021/acsomega.5c05437
Structural Bias Effect On Azidation at C‑1 and C‑2 of Alkyl-3,6-anhydro‑d‑hexofuranosides: Synthetic Approach to Natural Products and Derivatives
Abstract
3,6-Anhydro hexofuranose sugars are the structural motif of natural product furanodictines A-B and sauropunols A-D, F, and H. Conversion of the 2-hydroxyl group of alkyl-3,6-anhydro-5-O-benzoyl-d-glucofuranosides to triflate intermediates followed by azidation reaction yielded 2-deoxy-2-azido derivatives when the substituents at C-1and C-2 are in cis relation; on the other hand, in the case of trans substituents, the products were α-glycosyl azide analogues. A similar reaction of butyl-3,6-anhydro-5-O-benzoyl- d-mannofuranosides, obtained from the corresponding α- or β-d-glucofuranoside through appropriate oxidation and reduction reactions, yielded only 2-deoxy-2-azido products. We report here in a synthetic approach to 2-substituted sauropunols, furanodictines A-B, and related analogues, along with 1,4-disubstituted 1,2,3-triazolyl glycoconjugates and N-glycosyl amide starting from d-glucose derived precursors.
© 2025 The Authors. Published by American Chemical Society.
Figures
References
-
- Agrahari A. K., Bose P., Jaiswal M. K., Rajkhowa S., Singh A. S., Hotha S., Mishra, Tiwari V. K.. Cu (I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev. 2021;121:7638–7956. doi: 10.1021/acs.chemrev.0c00920. - DOI - PubMed
- Sangwan R., Khanam A., Mandal P. K.. An overview on the chemical N-functionalization of sugars and formation of N-Glycosides. Eur. J. Chem. 2020;2020:5949–5977. doi: 10.1002/ejoc.202000813. - DOI
- Tiwari V. K., Mishra B. B., Mishra K. B., Mishra N., Singh A. S., Chen X.. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016;116:3086–3240. doi: 10.1021/acs.chemrev.5b00408. - DOI - PubMed
- Beckmann H. S., Wittmann V.. Azides in carbohydrate chemistry. Organic Azides. 2009:469–490. doi: 10.1002/9780470682517.ch16. - DOI
- Witczak Z. J.. Recent advances in the synthesis of functionalized carbohydrate azides. Specialist Periodical Reports: Carbohydrate Chemistry. 2010;36:176–193. doi: 10.1039/9781849730891-00176. - DOI
- Györgydeák Z., Thiem J.. Synthesis and transformation of glycosyl azides. Adv. Carbohydr. Chem. Biochem. 2006;60:103–182. doi: 10.1016/S0065-2318(06)60004-8. - DOI - PubMed
- Györgydeák Z., Szilágyi L., Paulsen H.. Synthesis, structure and reactions of glycosyl azides. J. Carbohydr. Chem. 1993;12:139–163. doi: 10.1080/07328309308021266. - DOI
- Sun Q., Ni J., Li S., Ding H., Wang P., Song N., Wang X., Li M.. Access to Reverse Glycosyl Azides and Rare Sugar-Based Glycosyl Azides via Radical Decarboxylative Azidation: Divergent Synthesis of 4’-C-Azidonucleosides as Potential Antiviral Agents. Org. Lett. 2024;26:3997–4001. doi: 10.1021/acs.orglett.4c01084. - DOI - PubMed
- Fernández-Bolaños J. G., Lopez O.. Synthesis of Heterocycles from Glycosylamines and Glycosyl Azides. Heterocycles from Carbohydrate Precursors. 2007;7:31–66. doi: 10.1007/7081_2007_053. - DOI
- Kofsky J. M., Daskhan G. C., Macauley M. S., Capicciotti C. J.. Efficient Synthesis of Azido Sugars Using Fluorosulfuryl Azide Diazotransfer Reagent. Eur. J. Org. Chem. 2022;2022:e202200108. doi: 10.1002/ejoc.202200108. - DOI
- Nayak S., Yadav S.. Stereoselective synthesis of glycosyl azides from anomeric hydroxides via protecting group manipulations. Carbohydr. Res. 2023;523:108739. doi: 10.1016/j.carres.2023.108739. - DOI - PubMed
-
- Pradhan S., Janhavi B., Das T. M.. Recent Advances in the Synthesis and Applications of Partially Protected N-Glycosylamines. Curr. Org. Chem. 2025;29:402–420. doi: 10.2174/0113852728316820240815164622. - DOI
- Traverssi M. G., Manzano V. E., Varela O., Colomer J. P.. Synthesis of N-glycosyl amides: conformational analysis and evaluation as inhibitors of β-galactosidase from E. coli. RSC Adv. 2024;14:2659–2672. doi: 10.1039/D3RA07763B. - DOI - PMC - PubMed
- Zheng J., Urkalan K. B., Herzon S. B.. Direct synthesis of β-N-glycosides by the reductive glycosylation of azides with protected and native carbohydrate donors. Angew. Chem. (International ed. in English) 2013;52:6068–6071. doi: 10.1002/anie.201301264. - DOI - PMC - PubMed
-
- McKay M. J., Nguyen H. M.. Recent developments in glycosyl urea synthesis. Carbohydr. Res. 2014;385:18–44. doi: 10.1016/j.carres.2013.08.007. - DOI - PubMed
- Gucchait A., Jana M., Jana K., Misra A. K.. Preparation of glycosyl thiourea derivatives from glycosyl azides using sulfamic acid and sodium iodide in one-pot. Carbohydr. Res. 2016;434:107–112. doi: 10.1016/j.carres.2016.09.002. - DOI - PubMed
-
- Bröder W., Kunz H.. A new method of anomeric protection and activation based on the conversion of glycosyl azides into glycosyl fluorides. Carbohydr. Res. 1993;249:221–241. doi: 10.1016/0008-6215(93)84071-D. - DOI - PubMed
- Downey A. M., Hocek M.. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J. Org. Chem. 2017;13:1239–1279. doi: 10.3762/bjoc.13.123. - DOI - PMC - PubMed
- Bojarová P., Petrásková L., Ferrandi E. E., Monti D., Pelantová H., Kuzma M., Simerská P., Křen V.. Glycosyl azides–an alternative way to disaccharides. Advanced Synthesis & Catalysis. 2007;349:1514–1520. doi: 10.1002/adsc.200700028. - DOI
- Fialová P., Carmona A. T., Robina I., Ettrich R., Sedmera P., Přikrylová V., Petrásková-Hušáková L., Křen V.. Glycosyl azidea novel substrate for enzymatic transglycosylations. Tetrahedron Lett. 2005;46:8715–8718. doi: 10.1016/j.tetlet.2005.10.040. - DOI
- Cano M. E., Varela O., García-Moreno M. I., Fernández J. M. G., Kovensky J., Uhrig M. L.. Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process. Carbohydr. Res. 2017;443:58–67. doi: 10.1016/j.carres.2017.03.018. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous