Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep 12;10(37):42999-43011.
doi: 10.1021/acsomega.5c05437. eCollection 2025 Sep 23.

Structural Bias Effect On Azidation at C‑1 and C‑2 of Alkyl-3,6-anhydro‑d‑hexofuranosides: Synthetic Approach to Natural Products and Derivatives

Affiliations

Structural Bias Effect On Azidation at C‑1 and C‑2 of Alkyl-3,6-anhydro‑d‑hexofuranosides: Synthetic Approach to Natural Products and Derivatives

Ratul Hore et al. ACS Omega. .

Abstract

3,6-Anhydro hexofuranose sugars are the structural motif of natural product furanodictines A-B and sauropunols A-D, F, and H. Conversion of the 2-hydroxyl group of alkyl-3,6-anhydro-5-O-benzoyl-d-glucofuranosides to triflate intermediates followed by azidation reaction yielded 2-deoxy-2-azido derivatives when the substituents at C-1and C-2 are in cis relation; on the other hand, in the case of trans substituents, the products were α-glycosyl azide analogues. A similar reaction of butyl-3,6-anhydro-5-O-benzoyl- d-mannofuranosides, obtained from the corresponding α- or β-d-glucofuranoside through appropriate oxidation and reduction reactions, yielded only 2-deoxy-2-azido products. We report here in a synthetic approach to 2-substituted sauropunols, furanodictines A-B, and related analogues, along with 1,4-disubstituted 1,2,3-triazolyl glycoconjugates and N-glycosyl amide starting from d-glucose derived precursors.

PubMed Disclaimer

Figures

1
1
Natural 3,6-anhydro-d-hexofuranose analogues (1–10).
2
2
3,6-Anhydro-d-hexofuranose core containing bioactive compounds (11–16).
1
1. Previous Reports of Azidation at C-2 of Anomeric Mixture of 18
2
2. Synthesis of 2-β-Azido Sauropunol A (25) and Its Analogue (24), 2-β-Acetamido Sauropunol A (27) and Its Analogue (26), and 2-β-Azido Sauropunol C/D (28
3
3. Synthesis of Furanodictine B (10) and Its Glycosides (2930) and Benzoate (31) Analogue
4
4. Synthesis of Glycosyl Azides (4143) Based on 3,6-Anhydro-d-hexofuranose
5
5. Synthesis of 1,4-Disubstituted Triazolyl Glycoconjugates Based on 3,6-Anhydro-d-mannofuranose (4649
6
6. Synthesis of N-Glycosyl Acetamides on 3,6-Anhydro-d-mannofuranose Core (50 and 52
7
7. Synthesis of 2-β-Hydroxy- (55), 2-α-Azido- (58), 2-α-Acetamido­(59)-Sauropunol B, and Furanodictine A (9) and Its β-Anomeric Butylglycoside (60) Analogue
8
8. Synthesis of 2-α-Azido Sauropunol A (66

References

    1. Agrahari A. K., Bose P., Jaiswal M. K., Rajkhowa S., Singh A. S., Hotha S., Mishra, Tiwari V. K.. Cu (I)-catalyzed click chemistry in glycoscience and their diverse applications. Chem. Rev. 2021;121:7638–7956. doi: 10.1021/acs.chemrev.0c00920. - DOI - PubMed
    2. Sangwan R., Khanam A., Mandal P. K.. An overview on the chemical N-functionalization of sugars and formation of N-Glycosides. Eur. J. Chem. 2020;2020:5949–5977. doi: 10.1002/ejoc.202000813. - DOI
    3. Tiwari V. K., Mishra B. B., Mishra K. B., Mishra N., Singh A. S., Chen X.. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016;116:3086–3240. doi: 10.1021/acs.chemrev.5b00408. - DOI - PubMed
    4. Beckmann H. S., Wittmann V.. Azides in carbohydrate chemistry. Organic Azides. 2009:469–490. doi: 10.1002/9780470682517.ch16. - DOI
    5. Witczak Z. J.. Recent advances in the synthesis of functionalized carbohydrate azides. Specialist Periodical Reports: Carbohydrate Chemistry. 2010;36:176–193. doi: 10.1039/9781849730891-00176. - DOI
    6. Györgydeák Z., Thiem J.. Synthesis and transformation of glycosyl azides. Adv. Carbohydr. Chem. Biochem. 2006;60:103–182. doi: 10.1016/S0065-2318(06)60004-8. - DOI - PubMed
    7. Györgydeák Z., Szilágyi L., Paulsen H.. Synthesis, structure and reactions of glycosyl azides. J. Carbohydr. Chem. 1993;12:139–163. doi: 10.1080/07328309308021266. - DOI
    8. Sun Q., Ni J., Li S., Ding H., Wang P., Song N., Wang X., Li M.. Access to Reverse Glycosyl Azides and Rare Sugar-Based Glycosyl Azides via Radical Decarboxylative Azidation: Divergent Synthesis of 4’-C-Azidonucleosides as Potential Antiviral Agents. Org. Lett. 2024;26:3997–4001. doi: 10.1021/acs.orglett.4c01084. - DOI - PubMed
    9. Fernández-Bolaños J. G., Lopez O.. Synthesis of Heterocycles from Glycosylamines and Glycosyl Azides. Heterocycles from Carbohydrate Precursors. 2007;7:31–66. doi: 10.1007/7081_2007_053. - DOI
    10. Kofsky J. M., Daskhan G. C., Macauley M. S., Capicciotti C. J.. Efficient Synthesis of Azido Sugars Using Fluorosulfuryl Azide Diazotransfer Reagent. Eur. J. Org. Chem. 2022;2022:e202200108. doi: 10.1002/ejoc.202200108. - DOI
    11. Nayak S., Yadav S.. Stereoselective synthesis of glycosyl azides from anomeric hydroxides via protecting group manipulations. Carbohydr. Res. 2023;523:108739. doi: 10.1016/j.carres.2023.108739. - DOI - PubMed
    1. He X. P., Zeng Y. L., Zang Y., Li J., Field R. A., Chen G. R.. Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 2016;429:1–22. doi: 10.1016/j.carres.2016.03.022. - DOI - PubMed
    1. Pradhan S., Janhavi B., Das T. M.. Recent Advances in the Synthesis and Applications of Partially Protected N-Glycosylamines. Curr. Org. Chem. 2025;29:402–420. doi: 10.2174/0113852728316820240815164622. - DOI
    2. Traverssi M. G., Manzano V. E., Varela O., Colomer J. P.. Synthesis of N-glycosyl amides: conformational analysis and evaluation as inhibitors of β-galactosidase from E. coli. RSC Adv. 2024;14:2659–2672. doi: 10.1039/D3RA07763B. - DOI - PMC - PubMed
    3. Zheng J., Urkalan K. B., Herzon S. B.. Direct synthesis of β-N-glycosides by the reductive glycosylation of azides with protected and native carbohydrate donors. Angew. Chem. (International ed. in English) 2013;52:6068–6071. doi: 10.1002/anie.201301264. - DOI - PMC - PubMed
    1. McKay M. J., Nguyen H. M.. Recent developments in glycosyl urea synthesis. Carbohydr. Res. 2014;385:18–44. doi: 10.1016/j.carres.2013.08.007. - DOI - PubMed
    2. Gucchait A., Jana M., Jana K., Misra A. K.. Preparation of glycosyl thiourea derivatives from glycosyl azides using sulfamic acid and sodium iodide in one-pot. Carbohydr. Res. 2016;434:107–112. doi: 10.1016/j.carres.2016.09.002. - DOI - PubMed
    1. Bröder W., Kunz H.. A new method of anomeric protection and activation based on the conversion of glycosyl azides into glycosyl fluorides. Carbohydr. Res. 1993;249:221–241. doi: 10.1016/0008-6215(93)84071-D. - DOI - PubMed
    2. Downey A. M., Hocek M.. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J. Org. Chem. 2017;13:1239–1279. doi: 10.3762/bjoc.13.123. - DOI - PMC - PubMed
    3. Bojarová P., Petrásková L., Ferrandi E. E., Monti D., Pelantová H., Kuzma M., Simerská P., Křen V.. Glycosyl azides–an alternative way to disaccharides. Advanced Synthesis & Catalysis. 2007;349:1514–1520. doi: 10.1002/adsc.200700028. - DOI
    4. Fialová P., Carmona A. T., Robina I., Ettrich R., Sedmera P., Přikrylová V., Petrásková-Hušáková L., Křen V.. Glycosyl azidea novel substrate for enzymatic transglycosylations. Tetrahedron Lett. 2005;46:8715–8718. doi: 10.1016/j.tetlet.2005.10.040. - DOI
    5. Cano M. E., Varela O., García-Moreno M. I., Fernández J. M. G., Kovensky J., Uhrig M. L.. Synthesis of β-galactosylamides as ligands of the peanut lectin. Insights into the recognition process. Carbohydr. Res. 2017;443:58–67. doi: 10.1016/j.carres.2017.03.018. - DOI - PubMed

LinkOut - more resources