Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Nov 10;54(22):10397-10426.
doi: 10.1039/d5cs00715a.

An AI-accelerated pathway for reproducible and stable halide perovskites

Affiliations
Review

An AI-accelerated pathway for reproducible and stable halide perovskites

Abigail R Hering et al. Chem Soc Rev. .

Abstract

Halide perovskites (HPs) have remarkable optoelectronic properties, and in the last decade their photovoltaic power conversion efficiency and light-emitting diode efficiency have skyrocketed. Despite the surge in research on these burgeoning materials, two key challenges in the field remain: material irreproducibility and instability. Their behavior is especially dynamic in response to environmental stressors, due to complex interactions with the perovskite crystal lattice. In this review, we survey the latest achievements in HP materials research accomplished with the assistance of artificial intelligence (AI), through the implementation of automated experimentation and machine learning (ML) data analysis. Automated synthesis and characterization tackle problems with material irreproducibility by systematically controlling parameters with very high precision, creating massive datasets, and allowing methodical comparisons from which unbiased conclusions can be drawn. AI can reveal otherwise unnoticed trends, inform future experiments with the highest potential information gain, and forecast future performance. The review concludes with a forward viewpoint of how human-assisted closed-loop laboratories and shared databases allow halide perovskite materials' processing, properties, and performance to be potentially optimized with AI, accelerating the development of highly reproducible and stable optoelectronic devices.

PubMed Disclaimer

LinkOut - more resources