This is a preprint.
Predicting the Tumor Microenvironment Composition and Immunotherapy Response in Non-Small Cell Lung Cancer from Digital Histopathology Images
- PMID: 41030932
- PMCID: PMC12478338
- DOI: 10.1101/2024.06.11.24308696
Predicting the Tumor Microenvironment Composition and Immunotherapy Response in Non-Small Cell Lung Cancer from Digital Histopathology Images
Update in
-
Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images.NPJ Precis Oncol. 2024 Dec 19;8(1):280. doi: 10.1038/s41698-024-00765-w. NPJ Precis Oncol. 2024. PMID: 39702609 Free PMC article.
Abstract
Immune checkpoint inhibitors (ICI) have become integral to treatment of non-small cell lung cancer (NSCLC). However, reliable biomarkers predictive of immunotherapy efficacy are limited. Here, we introduce HistoTME, a novel weakly supervised deep learning approach to infer the tumor microenvironment (TME) composition directly from histopathology images of NSCLC patients. We show that HistoTME accurately predicts the expression of 30 distinct cell type-specific molecular signatures directly from whole slide images, achieving an average Pearson correlation of 0.5 with the ground truth on independent tumor cohorts. Furthermore, we find that HistoTME-predicted microenvironment signatures and their underlying interactions improve prognostication of lung cancer patients receiving immunotherapy, achieving an AUROC of 0.75[95% CI: 0.61-0.88] for predicting treatment responses following first-line ICI treatment, utilizing an external clinical cohort of 652 patients. Collectively, HistoTME presents an effective approach for interrogating the TME and predicting ICI response, complementing PD-L1 expression, and bringing us closer to personalized immuno-oncology.
Figures






References
-
- Sholl L. M. et al. Programmed Death Ligand-1 and Tumor Mutation Burden Testing of Patients With Lung Cancer for Selection of Immune Checkpoint Inhibitor Therapies: Guideline From the College of American Pathologists, Association for Molecular Pathology, International Association for the Study of Lung Cancer, Pulmonary Pathology Society, and LUNGevity Foundation. Arch Pathol Lab Med (2024). 10.5858/arpa.2023-0536-CP - DOI
Publication types
LinkOut - more resources
Full Text Sources
Research Materials