Characterizing the Immune Response in Pig-to-human Heart Xenografts Using a Multimodal Diagnostic System
- PMID: 41036838
- DOI: 10.1161/CIRCULATIONAHA.125.074971
Characterizing the Immune Response in Pig-to-human Heart Xenografts Using a Multimodal Diagnostic System
Abstract
Background: Porcine genome editing has revolutionized xenotransplantation, recently enabling the first pig-to-human heart xenotransplants. However, the xeno-immune response in heart xenografts remains largely unexplored. This study aimed to precisely characterize the xeno-immune response and injury in two heart xenografts, transplanted from 10-gene-edited pigs into brain-dead human recipients.
Methods: We analyzed xenograft biopsies at 66-hour post-reperfusion using a multimodal phenotyping approach combining: morphological evaluation, immunophenotyping, ultrastructural assessment, automated quantification of multiplex immunofluorescence staining and gene expression profiling. Xenografts before implantation and wild-type pig hearts with and without ischemia reperfusion injury and brain death were used as controls.
Results: Both xenografts showed evidence of endothelial activation and mild microvascular inflammation without capillary C4d deposition. Immune infiltrates were mainly composed of CD15+ and CD68+ innate immune cells. Ultrastructural assessment showed endothelial swelling with occasional intravascular leucocytes. Deep-learning based automated multiplex immunofluorescence analysis confirmed that microvascular inflammation was primarily associated with CD15+ and CD68+ innate immune cells. Both xenografts showed increased expression of genes and pathways associated with monocyte/macrophage activation, neutrophil activation, interferon-gamma response, natural killer cell burden, endothelial activation, apoptosis and injury repair. This phenotype was absent in all control pig hearts, independently from ischemia reperfusion injury and brain death.
Conclusions: Multimodal phenotyping of pig-to-human heart xenografts revealed early signs of xeno-immune response, characterized by mild innate microvascular inflammation, endothelial activation, and molecular signature characteristic of antibody-mediated rejection. Developing such precision diagnostic system could improve graft monitoring in future clinical settings.
LinkOut - more resources
Full Text Sources
