Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Oct 2:e0023425.
doi: 10.1128/msphere.00234-25. Online ahead of print.

Viral community diversity in the rhizosphere of the foundation salt marsh plant Spartina alterniflora

Affiliations
Free article

Viral community diversity in the rhizosphere of the foundation salt marsh plant Spartina alterniflora

Isabelle Du Plessis et al. mSphere. .
Free article

Abstract

Viruses of microorganisms impact microbial population dynamics, community structure, nutrient cycling, gene transfer, and genomic innovation. In wetlands, root-associated microbial communities mediate key biogeochemical processes important for plants involved in ecosystem maintenance. Nonetheless, the presence and role of microbial viruses in salt marshes remain poorly understood. In this study, we analyzed 24 metagenomes retrieved from the root zone of Spartina alterniflora, a foundation plant in salt marshes of the eastern and Gulf coasts of the U.S. The samples span three plant compartments-bulk sediment, rhizosphere, and root-and two cordgrass plant phenotypes: short and tall. We observed differentiation between phenotypes and increased similarity in viral communities between the root and rhizosphere, indicating that plant compartment and phenotype shape viral community composition. The majority of viral populations characterized are novel at the genus level, with a subset predicted to target microorganisms known to carry out key biogeochemical functions. The findings contribute to ongoing efforts to understand plant-associated viral diversity and community composition and to identify potential targets for exploring viral modulation of microbially mediated ecosystem functioning in intertidal wetlands.IMPORTANCESalt marshes are vital coastal ecosystems. Microbes in these environments drive nutrient cycling and support plant health, with Spartina alterniflora serving as a foundation species. This study explores viral communities associated with S. alterniflora, revealing how plant compartments and phenotypes shape viral composition. The discovery of numerous novel viruses, some potentially influencing microbes involved in key biogeochemical processes, highlights their ecological significance. Given the increasing pressures on coastal ecosystems, understanding virus-microbe-plant interactions is essential for predicting and managing ecosystem responses to environmental change.

Keywords: bacteriophages; metagenomics; microbial ecology.

PubMed Disclaimer

LinkOut - more resources