Deacetylation of ACLY Mediates RNA M6A-Modification of NOXA and Promotes Chemoresistance of Colorectal Cancer
- PMID: 41038802
- PMCID: PMC12713065
- DOI: 10.1002/advs.202503323
Deacetylation of ACLY Mediates RNA M6A-Modification of NOXA and Promotes Chemoresistance of Colorectal Cancer
Abstract
Chemoresistance is a major challenge for colorectal cancer (CRC) therapy and is a leading cause of cancer mortality, yet the underlying molecular mechanism remains unclear. ATP citrate lyase (ACLY), a rate-limiting enzyme of de novo lipid synthesis, plays an important role in tumor progression and chemotherapy. Here, It is demonstrated that deacetylation of ACLY is critical for chemoresistance in CRC. Through proteomic screening acetylated proteins in chemoresistant patient-derived cells, It is identified that ACLY is deacetylated at K978 site, which induces the relocation of ACLY to the nucleus and promotes its binding to RNA-binding protein 15 (RBM15). This facilitates N6-methyladenosine (m6A) methylation of NOXA (also known as PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1) and decreases the stability of NOXA mRNA, resulting in chemoresistance. With the selective inhibitor Santacruzamate A, targeting the deacetylase histone deacetylase 2 (HDAC2) to inhibit the acetylation may enhance the sensitivity of chemoresistance. These findings provide new insights into the mechanism of ACLY deacetylation promoting chemoresistance and suggest a potential therapeutic strategy to mitigate the chemoresistant effects.
Keywords: ACLY; acetylation; chemoresistance; colorectal cancer; m6A.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no competing Interest.
Figures
References
-
- Siegel R. L., Giaquinto A. N., Jemal A., Ca‐Cancer J. Clin. 2024, 74, 12. - PubMed
-
- Cercek A., Lumish M., Sinopoli J., Weiss J., Shia J., Lamendola‐Essel M., El Dika I. H., Segal N., Shcherba M., Sugarman R., Stadler Z., Yaeger R., Smith J. J., Rousseau B., Argiles G., Patel M., Desai A., Saltz L. B., Widmar M., Iyer K., Zhang J., Gianino N., Crane C., Romesser P. B., Pappou E. P., Paty P., Garcia‐Aguilar J., Gonen M., Gollub M., Weiser M. R., et al., N Engl J Med. 2022, 386, 2363. - PMC - PubMed
-
- Alatise O. I., Knapp G. C., Sharma A., Chatila W. K., Arowolo O. A., Olasehinde O., Famurewa O. C., Omisore A. D., Komolafe A. O., Olaofe O. O., Katung A. I., Ibikunle D. E., Egberongbe A. A., Olatoke S. A., Agodirin S. O., Adesiyun O. A., Adeyeye A., Kolawole O. A., Olakanmi A. O., Arora K., Constable J., Shah R., Basunia A., Sylvester B., Wu C., Weiser M. R., Seier K., Gonen M., Stadler Z. K., Kemel Y., et al., Nat. Commun. 2021, 12, 6821. - PMC - PubMed
-
- Du C., Huang D., Peng Y., Yao Y., Zhao Y., Yang Y., Wang H., Cao L., Zhu W.‐G., Gu J., Cancer Lett. 2017, 400, 183. - PubMed
MeSH terms
Substances
Grants and funding
- 2020YFA0909000/G.H/National Key Research and Development Program of China
- 2022YFA1104001/H.F/National Key Research and Development Program of China
- 82102703/J.W/National Natural Science Foundation of China
- 82127807/G.H/National Natural Science Foundation of China
- 82203717/M.Q.S/National Natural Science Foundation of China
LinkOut - more resources
Full Text Sources
Medical
Research Materials