Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Oct 3;11(40):eadu5064.
doi: 10.1126/sciadv.adu5064. Epub 2025 Oct 3.

Comprehensive engineering of novel glycosyltransferase for efficient, donor-promiscuous, and regioselective glycosylation of flavonoids

Affiliations

Comprehensive engineering of novel glycosyltransferase for efficient, donor-promiscuous, and regioselective glycosylation of flavonoids

Yang Lu et al. Sci Adv. .

Abstract

Flavonoid O-glycosylation, catalyzed by uridine diphosphate (UDP)-glycosyltransferases, is crucial for their therapeutic efficacy. However, most UDP-glycosyltransferases encounter three major limitations: low activity, poor regioselectivity, and restricted substrate availability, hindering their pharmaceutical applications. To address these challenges, we conducted protein engineering on a previously unidentified glycosyltransferase, UGT75AJ2, which had 3',7-O-glycosylation capabilities. Our approach involved three strategies: (i) development of a tailored focused rational iterative site-specific mutagenesis strategy, augmented by virtual screening and iterative mutagenesis, to design mutant Mut4-1 (S367A/V274A/F82V/I132T) with a 128-fold enhancement in relative catalytic activity; (ii) enhancement of the enzyme's compatibility with a broader spectrum of sugar donors achieved through structural-based engineering, yielding mutant S14G/F366H/S367G and demonstrating effective utilization of diverse donors; (iii) construction of a targeted mutant library to enhance regioselectivity by active site analysis, leading to mutants with high selectivity for targeted glycosylation sites. This comprehensive study tackles predominant challenges in UDP-glycosyltransferases protein engineering, providing innovative approaches and insights that enhance the development of flavonoid glycosides.

PubMed Disclaimer