B-EPIC: A Transformer-Based Language Model for Decoding B Cell Immunodominance Patterns
- PMID: 41054859
- DOI: 10.1002/advs.202508896
B-EPIC: A Transformer-Based Language Model for Decoding B Cell Immunodominance Patterns
Abstract
Vaccine development for pathogens has faced significant challenges, contributing to a public health burden. B-cell epitope (BCE) prediction is a crucial process in vaccine development, but is hindered by limited efficiency and accuracy. To address this, B-Epic, the first pipeline applying Transformer to predict BCEs is independently developed. B-Epic's robustness is validated through multiple testing datasets, including distinguishing clinically-approved vaccine targets, identifying BCEs (the Immune Epitope Database testing dataset; n = 23,888) and immunoreactive peptides (Trypanosoma cruzi peptidome; n = 239,575) with high AUCs of 0.882 and 0.945, respectively, outperforming widely used tools. Based on its superior performance, B-Epic is applied to the prevention of carcinogenic pathogens. In the application to Helicobacter pylori, peptides screened by B-Epic can activate B cells in experiments, suggesting their potential as vaccine targets. In another application to Epstein-Barr virus, B-Epic identifies pan-immunoreactive peptides in a clinical cohort (n = 899). These peptides exhibit higher reactogenicity in nasopharyngeal carcinoma patients than in healthy controls (n = 140), indicating their viability as immunodiagnostic targets. Overall, B-Epic utilizes self-attention, high-dimensional feature projection, and convolutional neural networks to autonomously extract complicated BCE features, enabling accurate BCE prediction and thereby facilitating efforts to prevent infectious diseases and cancers.
Keywords: B cell epitope prediction; Immunodiagnostics design; pathogens prevention; transformer; vaccines development.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
References
-
- P. Bonanni, C. Sacco, R. Donato, R. Capei, Clin Microbiol. Infect. 2014, 20, 32.
-
- B. Greenwood, Philos. Trans. R. Soc. B: Biol. Sci. 2014, 369, 20130433.
-
- I. Mansoor, H. A. Eassa, K. H. A. Mohammed, M. A. Abd El‐Fattah, M. H. Abdo, E. Rashad, H. A. Eassa, A. Saleh, O. M. Amin, M. I. Nounou, O. Ghoneim, AAPS PharmSciTech 2022, 23, 103.
-
- Y. Li, X. Wang, D. M. Blau, M. T. Caballero, D. R. Feikin, C. J. Gill, S. A. Madhi, S. B. Omer, E. A. F. Simões, H. Campbell, A. B. Pariente, D. Bardach, Q. Bassat, J.‐S. Casalegno, G. Chakhunashvili, N. Crawford, D. Danilenko, L. A. H. Do, M. Echavarria, A. Gentile, A. Gordon, T. Heikkinen, Q. S. Huang, S. Jullien, A. Krishnan, E. L. Lopez, J. Markic, A. Mira‐Iglesias, H. C. Moore, J. Moyes, et al., Lancet 2022, 399, 2047.
-
- C. Sun, Y.‐F. Kang, X.‐Y. Fang, Y.‐N. Liu, G.‐L. Bu, A.‐J. Wang, Y. Li, Q.‐Y. Zhu, H. Zhang, C. Xie, X.‐W. Kong, Y.‐J. Peng, W.‐J. Lin, L. Zhou, X.‐C. Chen, Z.‐Z. Lu, H.‐Q. Xu, D.‐C. Hong, X. Zhang, L. Zhong, G.‐K. Feng, Y.‐X. Zeng, M. Xu, Q. Zhong, Z. Liu, M.‐S. Zeng, Cell Host Microbe 2023, 31, 1882.