Rheumatoid arthritis synovial fibroblasts modulate T cell activation
- PMID: 41055954
- DOI: 10.1172/jci.insight.193054
Rheumatoid arthritis synovial fibroblasts modulate T cell activation
Abstract
In the rheumatoid arthritis (RA) synovium, resident fibroblast-like synoviocytes (FLS) express MHC class II molecules (HLA-D) but lack the co-stimulatory signals typically required for T cell activation. Here, we demonstrate that antigen presentation by FLS induces a distinct T cell activation state characterized by high CD69, yet reduced CD25 and HLA-DR expression, suppressed proliferation, and decreased effector cytokine production compared to professional antigen presenting cells (APCs), such as macrophages. FLS were also capable of suppressing macrophage-induced T cell activation, underscoring their dominant immunomodulatory role in the synovial microenvironment. Mechanistically, we identify indoleamine 2,3-dioxygenase (IDO1)-mediated tryptophan depletion as the primary driver of FLS-induced T cell hypo-responsiveness. Spatial transcriptomics revealed colocalization of IDO1 and CD69 within ectopic lymphoid structures in RA synovium, further supporting the in vivo relevance of this pathway. These findings provide the groundwork for positioning FLS as critical T cell regulators in RA and highlight the importance of preserving their immunosuppressive properties when therapeutically targeting pathogenic FLS functions.
Keywords: Autoimmunity; Immunology; Rheumatology.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous