Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Sep;90(9):1252-1263.
doi: 10.1134/S0006297925601467.

Effect of Non-Muscle Tropomyosin Isoforms Encoded by the TPM1 Gene on Cofilin-1 Activity toward Actin Filaments

Affiliations

Effect of Non-Muscle Tropomyosin Isoforms Encoded by the TPM1 Gene on Cofilin-1 Activity toward Actin Filaments

Svetlana G Roman et al. Biochemistry (Mosc). 2025 Sep.

Abstract

Actin cytoskeleton is a key participant in numerous cellular processes, including organelle transport, motility, contractility, exocytosis, and endocytosis. It also plays a critical role in pathological processes such as malignant cancer cell invasion. The actin-binding proteins, particularly tropomyosins (Tpm) and cofilins, are involved in actin cytoskeleton remodeling. For this study, we selected the least studied isoforms of Tpm expressed from the TPM1 gene - Tpm1.7, Tpm1.8, and Tpm1.9 - as well as the more well-known Tpm1.1 and Tpm1.6. We investigated mutual influence of these Tpm isoforms and cofilin-1 (cof-1) on actin filament dynamics. Using co-sedimentation assays, we demonstrated that Tpm1.7, Tpm1.8, and Tpm1.9 significantly inhibit cof-1 binding to the F-actin surface. Viscometry was employed to assess depolymerizing and severing effects of cof-1 on actin filaments. Tpm1.1, Tpm1.8, and Tpm1.6 effectively prevented depolymerizing/severing action of cof-1, while the protective effect of Tpm1.7 and Tpm1.9 was less pronounced. The rhodamine-phalloidin displacement assay was used to analyze the cof-1-induced conformational changes in F-actin. All studied Tpm isoforms effectively prevented effects of cof-1 on actin filaments. Our findings indicate that the TPM1 gene products generally exert an inhibitory effect on cof-1 activity in relation to actin filament polymerization/depolymerization dynamics. Such properties of Tpm isoforms could be important for formation of specific intracellular populations of actin filaments.

Keywords: actin; actin cytoskeleton dynamics; actin-binding proteins; cofilin; tropomyosin.

PubMed Disclaimer

LinkOut - more resources