Biomechanical Impact of Cement Augmentation on Pedicle Screw Fixation and Adjacent Segment Disease in Multilevel Lumbar Fusion: A Finite Element Analysis
- PMID: 41077984
- PMCID: PMC12518904
- DOI: 10.14245/ns.2550294.147
Biomechanical Impact of Cement Augmentation on Pedicle Screw Fixation and Adjacent Segment Disease in Multilevel Lumbar Fusion: A Finite Element Analysis
Abstract
Objective: Cement augmentation is widely used to enhance pedicle screw fixation, particularly in osteoporotic patients. However, its effects on adjacent segment disease (ASD) and implant failure in multilevel lumbar interbody fusion remain unclear. This study aimed to assess the effectiveness of cement augmentation in preventing implant failure and its impact on ASD risk using finite element analysis (FEA).
Methods: A FEA of L2-S1 multilevel lumbar interbody fusion was performed to evaluate the biomechanical effects of cement augmentation. Three models were analyzed under normal and osteoporotic conditions: type 1 (no augmentation), type 2 (upper instrumented vertebra [UIV] augmentation), and type 3 (UIV and UIV+1 augmentation). Range of motion (ROM), intradiscal pressure (IDP), screw pull-out risk, and implant failure were assessed.
Results: Cement augmentation significantly reduced screw pull-out risk, particularly in osteoporotic conditions, where type 1 exhibited a failure rate of 91.5%, while type 2 and type 3 remained below 39%. Cement augmentation did not demonstrate a substantial impact on ASD development, as ROM and IDP changes remained within a minimal range in this FEA model. However, osteoporosis was associated with a substantial increase in IDP, with a result as high as 809%. Despite its benefits, augmentation at UIV+1 increased the risk of pedicle screw breakage and vertebral body fracture, with L1 (UIV+1) lower endplate fracture rate of 82.7% in type 3, compared to 56.6% in type 2 and 52.8% in type 1.
Conclusion: Cement augmentation effectively improves screw fixation and does not appear to significantly increase ASD risk based on this FEA study. Limiting cement augmentation to the UIV level in lumbar multilevel fusion may help reduce the risk of implant failure, though further clinical validation is required to confirm these biomechanical findings.
Keywords: Adjacent segment disease; Cement augmentation; Finite element analysis; Implant failure; Pedicle screw fixation.
Conflict of interest statement
The authors have nothing to disclose.
Figures





References
-
- Hostin R, McCarthy I, O’Brien M, et al. Incidence, mode, and location of acute proximal junctional failures after surgical treatment of adult spinal deformity. Spine (Phila Pa 1976) 2013;38:1008–15. - PubMed
-
- Yagi M, Rahm M, Gaines R, et al. Characterization and surgical outcomes of proximal junctional failure in surgically treated patients with adult spinal deformity. Spine (Phila Pa 1976) 2014;39:E607–14. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources