Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Nov 20;88(11).
doi: 10.1088/1361-6633/ae1304.

CaloChallenge 2022: a community challenge for fast calorimeter simulation

Claudius Krause  1   2 Michele Faucci Giannelli  3   4 Gregor Kasieczka  5 Benjamin Nachman  6 Dalila Salamani  7 David Shih  8 Anna Zaborowska  7 Oz Amram  9 Kerstin Borras  10   11 Matthew R Buckley  8 Erik Buhmann  5 Thorsten Buss  5   10 Renato Paulo Da Costa Cardoso  7 Anthony L Caterini  12 Nadezda Chernyavskaya  7 Federico A G Corchia  13   14 Jesse C Cresswell  12 Sascha Diefenbacher  6 Etienne Dreyer  15 Vijay Ekambaram  16 Engin Eren  10 Florian Ernst  2   7 Luigi Favaro  2 Matteo Franchini  13   14 Frank Gaede  10 Eilam Gross  15 Shih-Chieh Hsu  17 Kristina Jaruskova  7 Benno Käch  5   10 Jayant Kalagnanam  18 Raghav Kansal  9   19 Taewoo Kim  12 Dmitrii Kobylianskii  15 Anatolii Korol  10 William Korcari  5 Dirk Krücker  10 Katja Krüger  10 Marco Letizia  20   21 Shu Li  22   23   24 Qibin Liu  22   23   24 Xiulong Liu  17 Gabriel Loaiza-Ganem  12 Thandikire Madula  25 Peter McKeown  7   10 Isabell-A Melzer-Pellmann  10 Vinicius Mikuni  6 Nam Nguyen  18 Ayodele Ore  2 Sofia Palacios Schweitzer  2 Ian Pang  8 Kevin Pedro  9 Tilman Plehn  2 Witold Pokorski  7 Huilin Qu  7 Piyush Raikwar  7 John A Raine  26 Humberto Reyes-Gonzalez  21   27   28 Lorenzo Rinaldi  13   14 Brendan Leigh Ross  12 Moritz A W Scham  10   11   29 Simon Schnake  10   11 Chase Shimmin  30 Eli Shlizerman  17 Nathalie Soybelman  15 Mudhakar Srivatsa  18 Kalliopi Tsolaki  7 Sofia Vallecorsa  7 Kyongmin Yeo  18 Rui Zhang  31   32
Affiliations
Review

CaloChallenge 2022: a community challenge for fast calorimeter simulation

Claudius Krause et al. Rep Prog Phys. .

Abstract

We present the results of the 'Fast Calorimeter Simulation Challenge 2022'-the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few tens of thousand voxels. The 31 individual submissions span a wide range of current popular generative architectures, including variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows, diffusion models, and models based on conditional flow matching. We compare all submissions in terms of quality of generated calorimeter showers, as well as shower generation time and model size. To assess the quality we use a broad range of different metrics including differences in one-dimensional histograms of observables, KPD/FPD scores, AUCs of binary classifiers, and the log-posterior of a multiclass classifier. The results of the CaloChallenge provide the most complete and comprehensive survey of cutting-edge approaches to calorimeter fast simulation to date. In addition, our work provides a uniquely detailed perspective on the important problem of how to evaluate generative models. As such, the results presented here should be applicable for other domains that use generative AI and require fast and faithful generation of samples in a large phase space.Report Numbers: HEPHY-ML-24-05, FERMILAB-PUB-24-0728-CMS, TTK-24-43.

Keywords: CaloChallenge 2022; calorimeter; generative AI; machine learning; simulation.

PubMed Disclaimer

LinkOut - more resources