HMGB2 Promotes Cardiomyocyte Proliferation and Heart Regeneration Through MTA2-Driven Metabolic Reprogramming
- PMID: 41092376
- DOI: 10.1002/advs.202505820
HMGB2 Promotes Cardiomyocyte Proliferation and Heart Regeneration Through MTA2-Driven Metabolic Reprogramming
Abstract
The neonatal heart possesses the unique ability to regenerate post-injury. Underlying related mechanisms and reactivation of this process are crucial for regeneration medicine. Using quantitative proteomics with tandem mass tag labeling, RNA-sequencing (RNA-seq) and single-nucleus RNA-seq dataset analyses, high mobility group box 2 (HMGB2) is identified as a key regulator of cardiomyocyte proliferation, whose expression declines during postnatal heart development and increases in the high regenerative potential cardiomyocyte populations in hearts post-injury. Cardiomyocyte-specific HMGB2 knockdown curtails cardiomyocyte proliferation and impairs heart regeneration following apical resection in neonatal mice, while cardiomyocyte-specific HMGB2 overexpression enhances cardiomyocyte proliferation and facilitates cardiac regeneration and repair in adult mice post-myocardial infarction. Mechanistically, RNA-seq analysis reveals that HMGB2 promotes cardiomyocyte proliferation via activating hypoxia inducible factor 1ɑ (HIF-1α)-mediated glycolysis. This study further finds HMGB2 can directly interact with metastasis-associated protein 2 (MTA2) and inhibit its ubiquitination degradation to stabilize HIF-1α protein through immunoprecipitation-mass spectrometry (IP-MS) analysis. Finally, overexpression of HIF-1α or MTA2 also promotes cardiomyocyte proliferation and cardiac repair in adult mice following MI. Taken together, these findings highlight that HMGB2 plays a crucial role in promoting heart regeneration through regulating glycolysis. Activating the HMGB2-MTA2-HIF-1α axis might serve as a potential therapeutic option for regenerative therapies post-myocardial injury.
Keywords: HMGB2; MTA2; cardiomyocyte proliferation; glucose metabolism; heart regeneration.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
References
-
- G. W. Reed, J. E. Rossi, C. P. Cannon, Lancet 2017, 389, 197.
-
- K. K. Teo, T. Rafiq, Can. J. Cardiol. 2021, 37, 733.
-
- J. E. Bloom, S. Vogrin, C. M. Reid, A. E. Ajani, D. J. Clark, M. Freeman, C. Hiew, A. Brennan, D. Dinh, J. Williams‐Spence, L. P. Dawson, S. Noaman, D. P. Chew, E. Oqueli, N. Cox, D. McGiffin, S. Marasco, P. Skillington, A. Royse, D. Stub, D. M. Kaye, W. Chan, Eur. Heart J. 2024, 46, 72.
-
- T. Eschenhagen, R. Bolli, T. Braun, L. J. Field, B. K. Fleischmann, J. Frisen, M. Giacca, J. M. Hare, S. Houser, R. T. Lee, E. Marban, J. F. Martin, J. D. Molkentin, C. E. Murry, P. R. Riley, P. Ruiz‐Lozano, H. A. Sadek, M. A. Sussman, J. A. Hill, Circulation 2017, 136, 680.
-
- A. Pezhouman, N. B. Nguyen, M. Kay, B. Kanjilal, I. Noshadi, R. Ardehali, J. Mol. Cell. Cardiol. 2023, 182, 75.
Grants and funding
LinkOut - more resources
Miscellaneous