Pt Nanoparticle Disintegration at Oxide Interfaces Enhances CO Oxidation Catalysis
- PMID: 41110144
- DOI: 10.1002/smll.202506990
Pt Nanoparticle Disintegration at Oxide Interfaces Enhances CO Oxidation Catalysis
Abstract
Understanding how supported metal nanoparticles dynamically evolve under reaction conditions is critical for controlling their catalytic function. Here, the mechanism behind the dynamic disintegration of Pt nanoparticles (NPs) supported on CeOx-TiO2 (CT) during CO oxidation is elucidated, leading to the formation of single atoms (SAs) and/or sub-nanometer clusters. Density functional theory (DFT) calculations reveal that strong Pt-CO interactions weaken Pt─Pt cohesion, while electronic coupling between Pt and Ce ions stabilizes Pt-CO* intermediates at the oxide interface. Surface oxygen vacancies kinetically trap Pt-CO*, but the vacancies are replenished under oxygen-rich conditions, enabling Pt-CO* surface diffusion and subsequent structural reorganization. In situ spectroscopic analyses confirm the oxygen-driven transformation of Pt NPs, correlating with a threefold increase in mass-specific activity at 150 °C. These findings demonstrate that interfacial oxygen dynamics and metal-support interactions can be leveraged to induce nanoparticle disintegration and optimize catalytic performance, highlighting the catalytic potential of interface-engineered Pt nanostructures.
Keywords: CO oxidation; dynamic structural evolution; heterogeneous catalysis; in situ X‐ray analysis; interface; single atom catalyst.
© 2025 The Author(s). Small published by Wiley‐VCH GmbH.
References
-
- B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634.
-
- X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
-
- W. E. Kaden, T. Wu, W. A. Kunkel, S. L. Anderson, Science 2009, 326, 826.
-
- W. Yu, M. D. Porosoff, J. G. Chen, Chem. Rev. 2012, 112, 5780.
-
- J. Yang, Y. Huang, H. Qi, C. Zeng, Q. Jiang, Y. Cui, Y. Su, X. Du, X. Pan, X. Liu, W. Li, B. Qiao, A. Wang, T. Zhang, Nat. Commun. 2022, 13, 4244.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
