Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Dec 15:1379:344713.
doi: 10.1016/j.aca.2025.344713. Epub 2025 Sep 26.

Cs3Bi2Br9 QDs/BiOBr heterojunction photoelectrochemical biosensor with APE1 enzyme-driven bipedal DNA walker signal amplification for miRNA-320d detection

Affiliations

Cs3Bi2Br9 QDs/BiOBr heterojunction photoelectrochemical biosensor with APE1 enzyme-driven bipedal DNA walker signal amplification for miRNA-320d detection

Chengxiang Li et al. Anal Chim Acta. .

Abstract

Background: MicroRNAs (miRNAs), as pivotal biomarkers, demonstrate critical significance in early cancer diagnosis through their sensitive detection. An ultrasensitive photoelectrochemical (PEC) sensing platform for miRNA-320d detection was developed by integrating apurinic/apyrimidinic endonuclease 1 (APE1) enzyme-driven bipedal DNA walker amplification strategy.

Results: The platform employed a Cs3Bi2Br9 QDs/BiOBr Z-scheme heterojunction as the photoactive material, which generated a robust anodic photocurrent. Upon immobilizing alkaline phosphatase (ALP)-conjugated gold nanoparticles carrying apurine/pyrimidine (AP) site-modified L1 (ALP-Au NPs-L1) probes on the heterojunction surface, catalytic hairpin assembly (CHA)-generated 3D bipedal DNA walker walked in the presence of miRNA-320d, hybridizing with L1 to form duplex structures. The APE1 enzyme then selectively cleaved these duplexes, triggering the release of ALP-Au NPs from the electrode surface. This spatial separation deactivated the catalytic capacity of ALP, inducing a pronounced photocurrent attenuation. By synergizing the exceptional PEC performance of the Cs3Bi2Br9 QDs/BiOBr heterojunction, specific recognition and efficient cleavage of APE1 enzyme, and 3D walker-mediated signal amplification, this platform achieved ultrasensitive miRNA-320d detection with a detection limit of 0.1 fM and a linear range spanning 1 fM to 1 nM.

Significance: This study established novel conceptual frameworks for implementing emerging perovskite materials in PEC biosensing platforms targeting microRNA detection.

Keywords: APE1 enzyme; DNA walker; MicroRNA-320d; Perovskite quantum dots; Photoelectrochemical biosensor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources