Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Oct 28.
doi: 10.1177/21695172251387190. Online ahead of print.

Soft Tubular-Surface Rolling Robots

Affiliations

Soft Tubular-Surface Rolling Robots

Zihao Yuan et al. Soft Robot. .

Abstract

Soft creatures like Drosophila larvae can quickly ascend tubular surfaces via rolling, a capability not yet replicated by soft robots. Here, we present a single-piece soft robot capable of rolling along tubular structures by sequentially actuating its built-in axial muscles. We reveal that the sequential actuation generates distributed spinning torques along the robot's curved axis, enabling continuous non-coaxial rolling-distinct from current gravity-dependent rolling solutions. This non-coaxial rolling mechanism allows the robot to swiftly navigate tubular surfaces while conforming to their shapes and maintaining a stable grip. The robot's deformation and gripping force are actively adjusted to enhance its adaptability to various surfaces. We demonstrate that our robot can ascend pipes with varying geometries (e.g., varying-diameter, spiral-shaped, or non-cylindrical), traverse diverse terrains, pass through confined tunnels, and transition smoothly between planar rolling and pipe climbing. The robot's great adaptability and rapid movement underscore its potential for navigating scenarios with intricate surface geometries.

Keywords: biomimetic robots; pneumatic actuation; rolling mechanism; soft locomotion; tubular-surface robots.

PubMed Disclaimer

LinkOut - more resources