Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Sep;76(9):4245-9.
doi: 10.1073/pnas.76.9.4245.

pH-dependent migration of copper(II) to the vacant zinc-binding site of zinc-free bovine erythrocyte superoxide dismutase

pH-dependent migration of copper(II) to the vacant zinc-binding site of zinc-free bovine erythrocyte superoxide dismutase

J S Valentine et al. Proc Natl Acad Sci U S A. 1979 Sep.

Abstract

Bovine erythrocyte superoxide dismutase (Cu(2)Zn(2)SODase; superoxide:superoxide oxidoreductase, EC 1.15.1.1) consists of two identical subunits each containing Cu(2+) and Zn(2+) in close proximity. We describe here electron spin resonance (ESR) and visible absorption spectroscopic studies of the zinc-free derivative of this protein, Cu(2)E(2)SODase (E = empty) over the pH range 6-10. The ESR spectrum of the zinc-free protein at 77 K is markedly pH dependent. At pH < 8.0 the ESR spectrum is axial in appearance. At pH > 8.0, the lineshape becomes increasingly distorted with increasing pH until, at pH = 9.5, the spectrum is very broad and resembles that of the four-copper derivative Cu(2)Cu(2)SODase and of model imidazolate-bridged binuclear Cu(II) complexes. ESR spectra at 30 degrees C are also consistent with formation of Cu(II)-Im-Cu(II). A plot of changes in the signal amplitude of g perpendicular for Cu(2)E(2)SODase as a function of pH gives an apparent pK(a) of 8.2 for the transition. The long-wavelength absorption with lambda(max) = 700 nm characteristic of Cu(2)E(2)SODase shifts with increasing pH to 800 nm and the resulting visible spectrum is identical to that of Cu(2)Cu(2)SODase. All of the above-mentioned spectroscopic changes induced by additions of NaOH are reversed when the pH is decreased with HNO(3), although the approach to equilibrium is slow in the latter case. The results of these experiments are consistent with a reversible, pH-dependent migration of Cu(2+) from the native copper site of one subunit of the zinc-free protein to the empty zinc site of another subunit. By contrast, native protein, Cu(2)Zn(2)SODase, and the four-copper protein, Cu(2)Cu(2)SODase, show no variation in visible or ESR spectral properties in this pH range. Some previous results concerning the activity of Cu(2)E(2)SODase and its thermal stability are reexamined in light of these new findings.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1349-53 - PubMed
    1. Biochem Biophys Res Commun. 1975 Apr 21;63(4):986-92 - PubMed
    1. Biochim Biophys Acta. 1975 Aug 19;400(2):439-50 - PubMed
    1. Biochemistry. 1977 May 3;16(9):1930-6 - PubMed
    1. Biochemistry. 1972 May 23;11(11):2182-7 - PubMed

LinkOut - more resources