Pulmonary-Targeted Nanoparticles Interrupt the Malignant Mechanical and Biochemical Signaling Crosstalk for Idiopathic Pulmonary Fibrosis Therapy
- PMID: 41246879
- DOI: 10.1002/advs.202512658
Pulmonary-Targeted Nanoparticles Interrupt the Malignant Mechanical and Biochemical Signaling Crosstalk for Idiopathic Pulmonary Fibrosis Therapy
Abstract
Idiopathic pulmonary fibrosis (IPF) involves transforming growth factor-beta, a key factor that drives biochemical signaling pathways, inducing cellular transdifferentiation and excessive extracellular matrix (ECM) deposition. Increased ECM stiffness alters the mechanical microenvironment of the lung, exacerbating pulmonary dysfunction through mechanical signaling transduction. Here, persistent malignant mechanical and biochemical signaling crosstalk in IPF is demonstrated that drives the relentless progression of the disease. Therefore, inhalable lung-targeted lipid nanoparticles (VB-RT NPs) are developed for co-delivering verteporfin and berbamine to effectively treat IPF by interrupting pulmonary mechanical-biochemical signaling malignant crosstalk. Specifically, VB-RT NPs are modified with tannic acid to scavenge reactive oxygen species and enhance lung targeting, and with L-arginine to penetrate dense ECM and reach deeper lung regions. After being inhaled in a bleomycin model, VB-RT NPs inhibited fibroblast activation and promoted the transition of endothelial cell (EC)-like myofibroblasts to ECs, reducing endothelial-to-mesenchymal transition and fibrotic progression. Additionally, VB-RT NPs blocked the nuclear translocation of the mechanotransducers Yes-associated protein, interrupting fibrosis-related mechanotransduction pathways. The results demonstrate that VB-RT NPs effectively reversed dysregulated mechanical-biochemical signaling crosstalk in fibrotic lungs and halted fibrosis progression, offering a promising therapeutic approach for IPF.
Keywords: extracellular matrix; idiopathic pulmonary fibrosis; malignant crosstalk; mechanical and biochemical signals; mechanotransduction; transforming growth factor‐beta.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
References
-
- F. J. Martinez, H. R. Collard, A. Pardo, G. Raghu, L. Richeldi, M. Selman, J. J. Swigris, H. Taniguchi, A. U. Wells, Nat. Rev. Dis. Primers 2017, 3, 17074.
-
- T. E. King, Jr., A. Pardo, M. Selman, Lancet 2011, 378, 1949.
-
- R. Suzman, J. Beard, NIH Publ. 2011, 1, 273.
-
- L. Richeldi, H. R. Collard, M. G. Jones, Lancet 2017, 389, 1941.
-
- T. Sun, Z. Huang, W.‐C. Liang, J. Yin, W. Y. Lin, J. Wu, J.‐M. Vernes, J. Lutman, P. Caplazi, S. Jeet, T. Wong, M. Wong, D. J. DePianto, K. B. Morshead, K.‐H. Sun, Z. Modrusan, J. A. Vander Heiden, A. R. Abbas, H. Zhang, M. Xu, E.‐N. N'Diaye, M. Roose‐Girma, P. J. Wolters, R. Yadav, S. Sukumaran, N. Ghilardi, R. Corpuz, C. Emson, Y. G. Meng, T. R. Ramalingam, et al., Sci. Transl. Med. 2021, 13, abe0407.
Grants and funding
- 82020108029/National Natural Science Foundation of China
- 82073398/National Natural Science Foundation of China
- 82370424/National Natural Science Foundation of China
- SKLNMZZ202021/Project of State Key Laboratory of Natural Medicines, China Pharmaceutical University
- 202410006/Jilin Provincial Foundation of Changbai Talent Outstanding Team