Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1977 Dec;70(6):747-70.
doi: 10.1085/jgp.70.6.747.

Electrical and adaptive properties of rod photoreceptors in Bufo marinus. I. Effects of altered extracellular Ca2+ levels

Review

Electrical and adaptive properties of rod photoreceptors in Bufo marinus. I. Effects of altered extracellular Ca2+ levels

S A Lipton et al. J Gen Physiol. 1977 Dec.

Abstract

The effects of altering extracellular Ca(2+) levels on the electrical and adaptive properties of toad rods have been examined. The retina was continually superfused in control (1.6 mM Ca(2+)) or test ringer's solutions, and rod electrical activity was recorded intracellularly. Low-calcium ringer's (10(-9)M Ca(2+)) superfused for up to 6 min caused a substantial depolarization of the resting membrane potential, an increase in light-evoked response amplitudes, and a change in the waveform of the light-evoked responses. High Ca(2+) ringer's (3.2 mM) hyperpolarized the cell membrane and decreased response amplitudes. However, under conditions of either low or high Ca(2+) superfusion for up to 6 min, in both dark-adapted and partially light-adapted states, receptor sensitivity was virtually unaffected; i.e., the V-log I curve for the receptor potential was always located on the intensity scale at a position predicted by the prevailing light level, not by Ca(2+) concentration. Thus, we speculate that cytosol Ca(2+) concentration is capable of regulating membrane potential levels and light-evoked response amplitudes, but not the major component of rod sensitivity. Low Ca(2+) ringer's also shortened the period of receptor response saturation after a bright but nonbleaching light flash, hence accelerating the onset of both membrane potential and sensitivity recovery during dark adaptation. Exposure of the retina to low Ca(2+) (10(-9)M) ringer's for long periods (7-15 min) caused dark-adapted rods to lose responsiveness. Response amplitudes gradually decreased, and the rods became desensitized. These severe conditions of low Ca(2+) caused changes in the dark-adapted rod that mimic those observed in rods during light adaptation. We suggest that loss of receptor sensitivity during prolonged exposure to low Ca(2+) ringer's results from a decrease of intracellular (intradisk) stores of Ca(2+); i.e., less Ca(2+) is thereby released per quantum catch.

PubMed Disclaimer

Similar articles

Cited by

Publication types