Decoding Multi-Omics Signatures in Lower-Grade Glioma Using Protein-Protein Interaction-Informed Graph Attention Networks and Ensemble Learning
- PMID: 41300918
- PMCID: PMC12651222
- DOI: 10.3390/diagnostics15222894
Decoding Multi-Omics Signatures in Lower-Grade Glioma Using Protein-Protein Interaction-Informed Graph Attention Networks and Ensemble Learning
Abstract
Background/Objectives: Lower-grade gliomas (LGGs) are a biologically and clinically heterogeneous group of brain tumors, for which molecular stratification plays essential role in diagnosis, prognosis, and therapeutic decision-making. Conventional unimodal classifiers do not necessarily describe cross-layer regulatory dynamics which entail the heterogeneity of glioma. Methods: This paper presents a protein-protein interaction (PPI)-informed hybrid model that combines multi-omics profiles, including RNA expression, DNA methylation, and microRNA expression, with a Graph Attention Network (GAT), Random Forest (RF), and logistic stacking ensemble learning. The proposed model utilizes ElasticNet-based feature selection to obtain the most informative biomarkers across omics layers, and the GAT module learns the biologically significant topological representations in the PPI network. The Synthetic Minority Over-Sampling Technique (SMOTE) was used to mitigate the class imbalance, and the model performance was assessed using a repeated five-fold stratified cross-validation approach using the following performance metrics: accuracy, precision, recall, F1-score, ROC-AUC, and AUPRC. Results: The findings illustrate that a combination of multi-omics data increases subtype classification rates (up to 0.984 ± 0.012) more than single-omics methods, and DNA methylation proves to be the most discriminative modality. In addition, analysis of interpretability using attention revealed the major subtype-specific biomarkers, including UBA2, LRRC41, ANKRD53, and WDR77, that show great biological relevance and could be used as diagnostic and therapeutic tools. Conclusions: The proposed multi-omics based on a biological and explainable framework provides a solid computational approach to molecular stratification and biomarker identification in lower-grade glioma, bridging between predictive power, biological clarification, and clinical benefits.
Keywords: biomarker discovery; graph attention network; lower-grade glioma; multi-omics integration; protein–protein interaction network.
Conflict of interest statement
The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures
References
-
- The Cancer Genome Atlas Research Network. Brat D.J., Verhaak R.G., Aldape K.D., Yung W.K., Salama S.R., Cooper L.A., Rheinbay E., Miller C.R., Vitucci M., et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015;372:2481–2498. doi: 10.1056/NEJMoa1402121. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
