Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Dec 3.
doi: 10.1186/s12943-025-02521-5. Online ahead of print.

Gut microbial metabolites in cancer immunomodulation

Affiliations
Free article
Review

Gut microbial metabolites in cancer immunomodulation

Hengshuo Liu et al. Mol Cancer. .
Free article

Abstract

Gut microbiota-derived metabolites are emerging as systemic "remote immunoregulators" that shape tumor immunity across tissues. Integrating evidence across short-chain fatty acids, tryptophan derivatives, secondary bile acids, polyamines and other metabolites, we advance a metabolite-immune pathway-cancer framework that links receptor-mediated signaling, epigenetic remodeling and metabolic reprogramming to context-dependent, bidirectional immune effects. Importantly, in addition to the g protein-coupled receptor / aryl hydrocarbon receptor pathway, the selected microbial small molecule metabolites are the true T-cell receptor ligands of unconventional T cells, directly shaping the tissue resident immune and tumor microenvironment, supplementing the receptor signaling and epigenetic programs in our framework. We synthesize how these metabolites recalibrate the tumor immune microenvironment-modulating antigen presentation, T-cell effector fitness and exhaustion, regulatory T-cell activity, and myeloid polarization-and why the same metabolite can either potentiate immune surveillance or entrench immunosuppression depending on ligand-receptor pairing, dose and tissue niche. We compare tumor-type specific patterns (e.g., colorectal, liver, lung, breast and prostate cancers) to highlight common circuits and organ-restricted idiosyncrasies. Methodologically, we outline how single-cell and spatial multi-omics, imaging mass spectrometry and functional biosensors now enable co-registration of metabolite exposure with immune-cell states in human tumors, providing an actionable basis for biomarker discovery. Given ongoing debate about signals attributed to intratumoral microbiota in low-biomass tumor tissues, we foreground quantifiable, spatially mappable and pharmacologically tractable metabolite-receptor pathways, using microbe-associated molecular patterns / translocation as comparators to judge when chemical signals should be prioritized as intervention targets. Finally, we evaluate precision intervention avenues-including fecal microbiota transplantation, rational bacterial consortia, engineered microbes and nanoparticle-enabled metabolite delivery-and propose stratification rules that pair metabolite/receptor signatures with fit-for-purpose delivery. Together, mapping tissue-specific metabolite-immune circuits and embedding them in robust biomarker frameworks may convert microbial metabolites from correlative markers into therapeutic targets and tools, improving the efficacy and durability of cancer immunotherapy.

Keywords: Gut microbiota; Immunotherapy; Microbial metabolites; Tumor immunity; Tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.

References

    1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
    1. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.
    1. Łuksza M, Sethna ZM, Rojas LA, Lihm J, Bravi B, Elhanati Y, et al. Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature. 2022;606:389–95.
    1. Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity. 2023;56:2188–205.
    1. Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural killer cells at the frontline in the fight against cancer. Cell Death Dis. 2024;15:614.

LinkOut - more resources