Targeting IMPDH to inhibit SAMHD1 in KMT2A-rearranged leukaemia
- PMID: 41399259
- DOI: 10.1080/15384101.2025.2601796
Targeting IMPDH to inhibit SAMHD1 in KMT2A-rearranged leukaemia
Abstract
Cytarabine (ara-C) and fludarabine (F-ara-A) are key drugs in leukaemia treatment. SAMHD1 is known to confer resistance to ara-C and F-ara-A, and we previously identified ribonucleotide reductase inhibitors as indirect SAMHD1 inhibitors in a phenotypic screen. The inosine monophosphate dehydrogenase (IMPDH) inhibitor mycophenolic acid (MPA) was also a hit in this screen. IMPDH inhibitors (IMPDHi) have previously shown efficacy against KMT2A-rearranged (KMT2Ar) acute myeloid leukaemia (AML). We investigated whether IMPDH inhibition could enhance the effect of ara-C and F-ara-A in AML cell lines and primary AML samples, and whether this effect was linked to KMT2A status. We found that sensitivity to IMPDHi was independent of KMT2A status. IMPDHi synergized with ara-C and F-ara-A in a SAMHD1-dependent manner in a subset of AML cells, but not in acute lymphoblastic leukaemia cell lines. Mechanistically, IMPDHi depleted allosteric SAMHD1 activators GTP and dGTP, thereby increasing active triphosphate metabolites in SAMHD1-proficient, but not SAMHD1-deficient, cells. Our findings suggest that the addition of IMPDHi to ara-C and F-ara-A may have therapeutic benefits in some AML cases.
Keywords: IMPDH; KMT2A; SAMHD1; leukemia; therapy resistance.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous