Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2026 Jan;58(1):169-179.
doi: 10.1038/s41588-025-02451-4. Epub 2026 Jan 9.

De novo and inherited dominant variants in U4 and U6 snRNA genes cause retinitis pigmentosa

Mathieu Quinodoz #  1   2   3 Kim Rodenburg #  4 Zuzana Cvackova  5 Karolina Kaminska  1   2 Suzanne E de Bruijn  4   6 Ana Belén Iglesias-Romero  1   2 Erica G M Boonen  4   7 Mukhtar Ullah  1 Nick Zomer  4 Marc Folcher  1   2 Jacques Bijon  8   9 Lara K Holtes  4 Stephen H Tsang  10   11 Zelia Corradi  4 K Bailey Freund  8   12 Stefanida Shliaga  4 Daan M Panneman  4 Rebekkah J Hitti-Malin  4 Manir Ali  13 Ala'a AlTalbishi  14 Sten Andréasson  15 Georg Ansari  2 Gavin Arno  16   17   18 Galuh D N Astuti  4 Carmen Ayuso  19   20 Radha Ayyagari  21 Sandro Banfi  22   23 Eyal Banin  24 Tahsin Stefan Barakat  25 Mirella T S Barboni  26 Miriam Bauwens  27   28 Tamar Ben-Yosef  29 Virginie Bernard  30 David G Birch  31 Pooja Biswas  21 Fiona Blanco-Kelly  19   20 Beatrice Bocquet  32   33 Camiel J F Boon  34   35 Kari Branham  36 Dominique Bremond-Gignac  37   38 Alexis Ceecee Britten-Jones  39 Kinga M Bujakowska  40 Cyril Burin des Roziers  38   41   42 Elizabeth L Cadena  43 Giacomo Calzetti  44   45 Francesca Cancellieri  1   2 Luca Cattaneo  46 Naomi Chadderton  47 Peter Charbel Issa  48   49 Luísa Coutinho-Santos  50 Stephen P Daiger  43 Elfride De Baere  27   28 Marieke De Bruyne  27   28 Berta de la Cerda  51 John N De Roach  52 Julie De Zaeytijd  53   54 Ronny Derks  4 Claire-Marie Dhaenens  55 Lubica Dudakova  56 Jacque L Duncan  57 G Jane Farrar  47 Nicolas Feltgen  2 Beau J Fenner  58   59   60 Lidia Fernández-Caballero  19   20 Juliana M Ferraz Sallum  61 Simone Gana  46 Alejandro Garanto  4   62 Jessica C Gardner  17 Christian Gilissen  4 Roser Gonzàlez-Duarte  63 Kensuke Goto  64 Sam Griffiths-Jones  65 Tobias B Haack  66   67   68 Lonneke Haer-Wigman  4 Alison J Hardcastle  17 Takaaki Hayashi  69 Elise Héon  70 Lies H Hoefsloot  25 Alexander Hoischen  4   71 Josephine P Holtan  72 Carel B Hoyng  73 Manuel Benjamin B Ibanez 4th  74   75 Chris F Inglehearn  13 Takeshi Iwata  76 Brynjar O Jensson  77 Kaylie Jones  31 Vasiliki Kalatzis  32   33 Smaragda Kamakari  78 Marianthi Karali  22   79 Ulrich Kellner  80 Caroline C W Klaver  73   81 Krisztina Knézy  26 Robert K Koenekoop  82 Susanne Kohl  83 Taro Kominami  64 Laura Kühlewein  84 Tina M Lamey  52 Rina Leibu  85 Bart P Leroy  27   53   54 Petra Liskova  56   86 Irma Lopez  82 Victor R de J López-Rodríguez  87 Quinten Mahieu  27   28 Omar A Mahroo  17   18   88   89 Gaël Manes  32 Luke Mansard  30   32   90 M Pilar Martín-Gutiérrez  91 Nelson Martins  27   28 Laura Mauring  92   93   94 Martin McKibbin  13   95 Terri L McLaren  52 Isabelle Meunier  32   33 Michel Michaelides  17   18 José M Millán  96 Kei Mizobuchi  69 Rajarshi Mukherjee  95 Zoltán Zsolt Nagy  26 Kornelia Neveling  4 Monika Ołdak  97 Michiel Oorsprong  4 Yang Pan  76 Anastasia Papachristou  98 Antonio Percesepe  99 Maximilian Pfau  2 Eric A Pierce  40 Emily Place  40 Raj Ramesar  100 Francis Ramond  30   101 Florence Andrée Rasquin  102 Gillian I Rice  65 Lisa Roberts  100 María Rodríguez-Hidalgo  103   104 Javier Ruiz-Ederra  103   105 Ataf H Sabir  106   107 Ai Fujita Sajiki  64 Ana Isabel Sánchez-Barbero  19   20 Asodu Sandeep Sarma  24 Riccardo Sangermano  40 Cristina M Santos  50   108 Margherita Scarpato  22 Hendrik P N Scholl  109   110   111 Dror Sharon  24 Sabrina G Signorini  112 Francesca Simonelli  79 Ana Berta Sousa  113   114 Maria Stefaniotou  115 Kari Stefansson  77   116 Katarina Stingl  84 Akiko Suga  76 Patrick Sulem  77 Lori S Sullivan  43 Viktória Szabó  26 Jacek P Szaflik  117   118 Gita Taurina  119 Alberta A H J Thiadens  81 Carmel Toomes  13 Viet H Tran  120   121 Miltiadis K Tsilimbaris  98 Pavlina Tsoka  98 Veronika Vaclavik  120 Marie Vajter  56   86 Sandra Valeina  122 Enza Maria Valente  46   123 Casey Valentine  100 Rebeca Valero  63 Sophie Valleix  38   41   42 Joseph van Aerschot  124 L Ingeborgh van den Born  7 Mattias Van Heetvelde  27   28 Virginie J M Verhoeven  25   81 Andrea L Vincent  125 Andrew R Webster  17   18 Laura Whelan  47   126   127 Bernd Wissinger  83 Georgia G Yioti  115 Kazutoshi Yoshitake  76 Juan C Zenteno  87   128 Roberta Zeuli  22 Theresia Zuleger  66 Chaim Landau  129 Allan I Jacob  130 Siying Lin  18   131   132 Frans P M Cremers  4 Winston Lee  133 Jamie M Ellingford  65   134 David Stanek  5 Susanne Roosing  135 Carlo Rivolta  1   2   3
Affiliations

De novo and inherited dominant variants in U4 and U6 snRNA genes cause retinitis pigmentosa

Mathieu Quinodoz et al. Nat Genet. 2026 Jan.

Abstract

Small nuclear RNAs (snRNAs) combine with specific proteins to generate small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. U4 snRNA forms a duplex with U6 and, together with U5, contributes to the tri-snRNP spliceosomal complex. Variants in RNU4-2, which encodes U4, have recently been implicated in neurodevelopmental disorders. Here we show that heterozygous inherited and de novo variants in RNU4-2 and in four RNU6 paralogs (RNU6-1, RNU6-2, RNU6-8 and RNU6-9), which encode U6, recur in individuals with nonsyndromic retinitis pigmentosa (RP), a genetic disorder causing progressive blindness. These variants cluster within the three-way junction of the U4/U6 duplex, a site that interacts with tri-snRNP splicing factors also known to cause RP (PRPF3, PRPF8, PRPF31), and seem to affect snRNP biogenesis. Based on our cohort, deleterious variants in RNU4-2 and RNU6 paralogs may explain up to ~1.4% of otherwise undiagnosed RP cases. This study highlights the contribution of noncoding RNA genes to Mendelian disease and reveals pleiotropy in RNU4-2, where distinct variants underlie neurodevelopmental disorder and retinal degeneration.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors affiliated with deCODE genetics/Amgen Inc. (B.O.J., K. Stefansson, P.S.) are employed by the company. The other authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Structure of the U4/U6 duplex and rare variants found in RP cases and controls (gnomAD).
a, Two-dimensional structure of the U4/U6 duplex, with recurrent variants identified in RP cases (in red for U4 and in green for U6), all clustering within the three-way junction. Nucleotides affected by variants previously observed in NDD cases are underlined. b, Rare variants affecting RNU4-1, defined as AF < 0.1% in gnomAD v.4.1, identified in RP cases and in controls. c, Same as in b for RNU4-2, with recurrent pathogenic variants displayed in red. d, Same as b for all five RNU6 paralogs combined, with recurrent causative variants displayed in green. Significant P values for variants enriched in RP cases versus controls from gnomAD are indicated (two-sided Fisher’s test with Bonferroni correction).
Fig. 2
Fig. 2. Three-dimensional structure, from cryo-electron microscopy (PDB 6QW6), of the U4/U6 duplex and its interactions with neighboring splicing factors.
a, Naked U4/U6 pairing, showing the proximity of the causative variants identified (red and green). b, Same as in a with interacting PRPF proteins. c, Direct interactions of nucleotides of the U4/U6 duplex with PRPF31, via hydrogen bonds. d, Same as c but for PRPF3.
Fig. 3
Fig. 3. Expression and markers of transcriptional activity of RNU4 and RNU6 genes.
a, Expression of RNU4-1 and RNU4-2 from RNA-seq of human donor choroid (n = 13), NSR (n = 4) and RPE (n = 16). For these boxplots, the tick line within boxes indicates the median (also expressed numerically), boxes represent the first and the third quartiles and whiskers indicate the largest observation smaller than or equal to the first quartile − 1.5 × IQR and the smallest observation greater than or equal to the third quartile + 1.5 × IQR. b, Same as in a for RNU4 genes (RNU4-1, RNU4-2 and pseudogenes) and for all RNU6 genes (RNU6-1, RNU6-2, RNU6-7, RNU6-8, RNU6-9 and pseudogenes). c, ATAC-seq and H3K27ac signals for RNU4-1, RNU4-2, RNU4ATAC (red) and 105 RNU4 pseudogenes (black). d, Same as in c for five RNU6 genes and RNU6ATAC (red), as well as for 1,312 RNU6 pseudogenes (black). IQR, interquartile range.
Fig. 4
Fig. 4. Effects of RP variants in RNU4-2 and RNU6 on snRNP maturation.
a,b, Immunoprecipitation of U4-MS2 (WT and variants) (a) and U6-MS2 (WT and variants) (b). snRNPs were immunoprecipitated via MS2-YFP by anti-GFP antibodies and co-precipitated proteins were detected by western blotting. The position of the MS2 loop (green) in snRNAs is indicated. Four independent experiments were quantified. Immunoprecipitated proteins are normalized to input and U4 or U6 WT controls. Middle bars indicate average values and error bars the s.e.m. Statistical significance was analyzed by the two-tailed unpaired t-test and the P values were adjusted using the Benjamini–Hochberg FDR method to control for false discoveries. P values ≤ 0.05 are indicated. Full-length blots and antibody validation are provided as Source Data. Ctrl, control; IP, immunoprecipitation; WT, wild type. Source data

Update of

  • De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa.
    Quinodoz M, Rodenburg K, Cvackova Z, Kaminska K, de Bruijn SE, Iglesias-Romero AB, Boonen EGM, Ullah M, Zomer N, Folcher M, Bijon J, Holtes LK, Tsang SH, Corradi Z, Freund KB, Shliaga S, Panneman DM, Hitti-Malin RJ, Ali M, AlTalbishi A, Andréasson S, Ansari G, Arno G, Astuti GDN, Ayuso C, Ayyagari R, Banfi S, Banin E, Barboni MTS, Bauwens M, Ben-Yosef T, Birch DG, Biswas P, Blanco-Kelly F, Bocquet B, Boon CJF, Branham K, Britten-Jones AC, Bujakowska KM, Cadena EL, Calzetti G, Cancellieri F, Cattaneo L, Issa PC, Chadderton N, Coutinho-Santos L, Daiger SP, De Baere E, de la Cerda B, De Roach JN, De Zaeytijd J, Derks R, Dhaenens CM, Dudakova L, Duncan JL, Farrar GJ, Feltgen N, Fernández-Caballero L, Sallum JMF, Gana S, Garanto A, Gardner JC, Gilissen C, Goto K, Gonzàlez-Duarte R, Griffiths-Jones S, Haack TB, Haer-Wigman L, Hardcastle AJ, Hayashi T, Héon E, Hoischen A, Holtan JP, Hoyng CB, Ibanez MBB 4th, Inglehearn CF, Iwata T, Jones K, Kalatzis V, Kamakari S, Karali M, Kellner U, Knézy K, Klaver CCW, Koenekoop RK, Kohl S, Kominami T, Kühlewein L, Lamey TM, Leroy BP, Martín-Gutiérrez MP, Martins N, Mauring L, Leibu R, Lin S, Liskova P, Lopez I, López-Rodríguez VRJ, Mahroo OA, Manes G… See abstract for full author list ➔ Quinodoz M, et al. medRxiv [Preprint]. 2025 Jan 6:2025.01.06.24317169. doi: 10.1101/2025.01.06.24317169. medRxiv. 2025. Update in: Nat Genet. 2026 Jan;58(1):169-179. doi: 10.1038/s41588-025-02451-4. PMID: 39830270 Free PMC article. Updated. Preprint.

References

    1. Verbakel, S. K. et al. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res.66, 157–186 (2018). - DOI - PubMed
    1. Peter, V. G. et al. The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis. PNAS Nexus2, pgad043 (2023). - DOI - PMC - PubMed
    1. Perea-Romero, I. et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci. Rep.11, 1526 (2021). - DOI - PMC - PubMed
    1. Conti, G. M. et al. Genetics of retinitis pigmentosa and other hereditary retinal disorders in western Switzerland. Ophthalmic Res.67, 172–182 (2024). - PubMed
    1. Rivolta, C. et al. RetiGene, a comprehensive gene atlas for inherited retinal diseases. Am. J. Hum. Genet.112, 2253–2265 (2025). - DOI - PMC - PubMed

Substances

LinkOut - more resources