Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2026 Jan 15;391(6782):eadq9006.
doi: 10.1126/science.adq9006. Epub 2026 Jan 15.

Nucleotide metabolic rewiring enables NLRP3 inflammasome hyperactivation in obesity

Affiliations

Nucleotide metabolic rewiring enables NLRP3 inflammasome hyperactivation in obesity

Danhui Liu et al. Science. .

Abstract

Obesity is a major disease risk factor due to obesity-associated hyperinflammation. We found that obesity induced Nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome hyperactivation and excessive interleukin (IL)-1β production in macrophages by disrupting SAM and HD domain-containing protein 1 (SAMHD1), a deoxynucleoside triphosphate (dNTP) hydrolase crucial for nucleotide balance. This caused aberrant accumulation of dNTPs, which can be transported into mitochondria, and initiated mitochondrial DNA (mtDNA) neosynthesis, which increased the presence of oxidized mtDNA and triggered NLRP3 hyperactivation. Deletion of SAMHD1 promoted NLRP3 hyperactivation in cells isolated from zebrafish, mice, and humans. SAMHD1-deficient mice showed elevated circulating IL-1β, insulin resistance, and metabolic dysfunction-associated steatohepatitis. Blocking dNTP mitochondrial transport prevented NLRP3 hyperactivation in macrophages from obese patients and SAMHD1-deficient mice. Our study revealed that obesity by inhibiting SAMHD1 rewired macrophage nucleotide metabolism, thereby triggering NLRP3 inflammasome hyperactivation to drive disease progression.

PubMed Disclaimer

MeSH terms