Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Jun;140(3):423-33.
doi: 10.1042/bj1400423.

The effect of starvation on insulin secretion and glucose metabolism in mouse pancreatic islets

The effect of starvation on insulin secretion and glucose metabolism in mouse pancreatic islets

C J Hedeskov et al. Biochem J. 1974 Jun.

Abstract

1. Rates of insulin secretion, glucose utilization, lactate output, incorporation of glucose into glycogen, contents of glucose 6-phosphate, fructose 1,6-diphosphate and ATP, and maximally extractable enzyme activities of hexokinase, high-K(m) glucose-phosphorylating activity (;glucokinase'), glucose 6-phosphatase and unspecific acid phosphatase were measured in isolated pancreatic islets from fed and 48-h-starved mice. 2. In the fed state insulin secretion from isolated islets was increased five- to six-fold when the extracellular glucose concentration was raised from 2.5mm to 16.7mm; 5mm-caffeine potentiated this effect. The secretory response to glucose of islets from mice starved for 48h was diminished at all glucose concentrations from 2.5mm up to approx. 40mm. Very high glucose concentrations (60mm and above) restored the secretory response to that found in the fed state, suggesting that the K(m) value for the overall secretory process had been increased (approx. fourfold) by starvation. Addition of 5mm-caffeine to islets from starved mice also restored the insulin secretory response to 2.5-16.7mm-glucose to normal values. 3. Extractable hexokinase, ;glucokinase', glucose 6-phosphatase and unspecific phosphatase activities were not changed by starvation. 4. Glucose utilization and glycolysis (measured as the rate of formation of (3)H(2)O from [5-(3)H]glucose over a 2h period) was decreased in islets from starved mice at all glucose concentrations up to approx. 55mm. At still higher glucose concentrations up to approx. 100mm, there was no difference between the fed and starved state, suggesting that the K(m) value for the rate-limiting glucose phosphorylation had been increased (approx. twofold) by starvation. Preparation of islets omitting substrates (glucose, pyruvate, fumarate and glutamate) from the medium during collagenase treatment lowered the glucose utilization measured subsequently at 16.7mm-glucose by 38 and 30% in islets from fed and starved mice respectively. Also the 2h lactate output by the islets at 16.7mm extracellular glucose was diminished by starvation. Incorporation of glucose into glycogen was extremely low, but the rate of incorporation was more than doubled by starvation. 5. After incubation for 30min at 16.7mm-glucose the content of glucose 6-phosphate was unchanged by starvation, that of ATP was increased and the concentration of (fructose 1,6-diphosphate plus triose phosphates) was decreased. 6. Possible mechanisms behind the correlated impairment in insulin secretion and islet glucose metabolism during starvation are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem J. 1964 Oct;93(1):66-78 - PubMed
    1. Diabetes. 1966 Jul;15(7):475-9 - PubMed
    1. J Clin Invest. 1966 Nov;45(11):1751-69 - PubMed
    1. Clin Chim Acta. 1966 Sep;14(3):361-6 - PubMed
    1. Clin Chim Acta. 1967 Aug;17(2):201-6 - PubMed

MeSH terms