Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1974 Dec;243(2):427-56.
doi: 10.1113/jphysiol.1974.sp010761.

Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine

Ionic mechanisms and receptor properties underlying the responses of molluscan neurones to 5-hydroxytryptamine

H M Gerschenfeld et al. J Physiol. 1974 Dec.

Abstract

1. Molluscan neurones have been found to show six different types of response (three excitatory and three inhibitory) to the iontophoretic application of 5-hydroxytryptamine (5-HT). The pharmacological properties of the receptors and the ionic mechanisms associated with these responses have been analysed.2. Four of the responses to 5-HT (named A, A', B and C) are consequent upon an increase in membrane conductance whereas the other two (named alpha and beta) are caused by a decrease in membrane conductance.3. The A-response to 5-HT consists of a ;fast' depolarization due to an increase mainly in Na(+)-conductance; the A'-response is a ;slow' depolarization also associated with a Na(+)-conductance increase. Receptors mediating the A- and A'-depolarizations have different pharmacological properties and may exist side by side on the same neurone.4. Both the B- and C-responses are inhibitory. The B-response is a ;slow' hyperpolarization due to an increase in K(+)-conductance, the C-response is a fast hyperpolarization associated with an increase in Cl(-)-conductance.5. The alpha-response to 5-HT is a depolarization which becomes reduced in amplitude with cell hyperpolarization and reverses at -75 mV; it is caused by a decrease in K(+)-conductance. The beta-response is an hyperpolarization which increases in amplitude with cell hyperpolarization and reverses at -20/-30 mV. It results from a decrease in conductance to both Na(+) and K(+) ions.6. The receptors involved in the 5-HT responses associated with a conductance increase may be recognized by the action of specific antagonists: 7-methyltryptamine blocks only the A-receptors, 5-methoxygramine only the B-receptors and neostigmine only the C-receptors. Curare blocks the A- and C-receptors and bufotenine, the A-, A'- and B-receptors. No specific antagonists have yet been found for the 5-HT responses caused by a conductance decrease.7. The significance of the multiplicity of receptors is discussed. Their functional significance at synapses is analysed in the following paper.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Science. 1971 Jan 15;171(3967):192-4 - PubMed
    1. Brain Res. 1973 Aug 30;58(2):529-34 - PubMed
    1. J Physiol. 1953 Aug;121(2):374-89 - PubMed
    1. J Physiol. 1966 Aug;185(3):684-700 - PubMed
    1. J Physiol. 1951 Nov 28;115(3):320-70 - PubMed

MeSH terms

LinkOut - more resources