Minimizing H2O2 Loss in Industrial Electrosynthesis via Asymmetric Main-Group Sn Single-Atom Catalysts
- PMID: 41559946
- DOI: 10.1002/anie.202523314
Minimizing H2O2 Loss in Industrial Electrosynthesis via Asymmetric Main-Group Sn Single-Atom Catalysts
Abstract
The electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction offers an appealing and sustainable route for on-site H2O2 production. However, its broader applicability is constrained by subpar yields, primarily resulting from insufficient selectivity and the occurrence of electrochemical and/or chemical decomposition of H2O2. Herein, we demonstrate that asymmetric N/S co-coordinated main-group Sn sites can effectively stabilize oxygen intermediates and rapidly desorb the generated H2O2, thereby enhancing 2e- ORR pathway selectivity while suppressing undesirable H2O2 decomposition reactions. At an industrially relevant current density of 300 mA cm-2, the main-group catalyst achieves an exceptional H2O2 faradaic efficiency of 93%. When scaled to an industrial sized area of 100 cm2, the pilot reactor delivers an impressive H2O2 production rate of 353.5 mmol h-1 at 20 A. In situ characterizations and theoretical simulations reveal that the main-group Sn sites exhibit inertness toward activation of H2O2, thereby mitigating H2O2 loss in electrosynthesis. The asymmetric N/S-coordination enhances electron transfer between the Sn center and oxygen intermediates, stabilizing the *OOH intermediate and facilitating H2O2 generation. This work presents a promising strategy for minimizing H2O2 loss in electrochemical production via the rational design of main-group catalysts with well-defined coordination and electronic structures.
Keywords: Asymmetric coordination; H2O2 decomposition; H2O2 electrosynthesis; Industrial‐level current; Main‐group catalysts.
© 2026 Wiley‐VCH GmbH.
References
-
- B.‐H. Lee, H. Shin, A. S. Rasouli, H. Choubisa, P. Ou, R. Dorakhan, I. Grigioni, G. Lee, E. Shirzadi, R. K. Miao, J. Wicks, S. Park, H. S. Lee, J. Zhang, Y. Chen, Z. Chen, D. Sinton, T. Hyeon, Y.‐E. Sung, E. H. Sargent, Nat. Catal. 2023, 6, 234–243, https://doi.org/10.1038/s41929‐023‐00924‐5.
-
- Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov, Y. Cui, Nat. Catal. 2018, 1, 156–162, https://doi.org/10.1038/s41929‐017‐0017‐x.
-
- J. Gao, H. bin Yang, X. Huang, S.‐F. Hung, W. Cai, C. Jia, S. Miao, H. M. Chen, X. Yang, Y. Huang, Chem 2020, 6, 658–674, https://doi.org/10.1016/j.chempr.2019.12.008.
-
- X. Chen, W. Fu, Z. Yang, Y. Yang, Y. Li, H. Huang, X. Zhang, B. Pan, Water Res. 2023, 230, 119562, https://doi.org/10.1016/j.watres.2022.119562.
-
- J. Han, J. Bian, C. Sun, Research 2020, 2020, 9512763.
Grants and funding
- 52027815/National Natural Science Foundation of China
- 52192684/National Natural Science Foundation of China
- 51978637/National Natural Science Foundation of China
- YD2400002007/USTC Research Funds of the Double First-Class Initiative
- 202203a07020015/Major Science and Technology Projects of Anhui Province
LinkOut - more resources
Full Text Sources
Miscellaneous
