Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1973 Oct;52(10):2660-3.
doi: 10.1172/JCI107459.

Acute changes in oxyhemoglobin affinity. Effects on oxygen transport and utilization

Acute changes in oxyhemoglobin affinity. Effects on oxygen transport and utilization

T E Riggs et al. J Clin Invest. 1973 Oct.

Abstract

It has been postulated that 2,3-diphosphoglycerate (DPG)-mediated changes in oxyhemoglobin affinity play an important role in oxygen delivery; however, the effect of an acute increase in affinity without changing red cell mass has not been systematically evaluated. This study was designed to measure changes in oxygen transport and oxygen consumption produced by an acute increase in oxyhemoglobin affinity caused by an autologous exchange transfusion using DPG-depleted stored blood. From each of 10 5-kg rhesus monkeys, 100 ml of blood was taken on the 1st and 3rd wk of the study and each stored in 25 ml of acid-citrate-dextrose storage solution. On the 5th wk, each animal underwent an exchange transfusion with 200 ml of its stored blood. Hemodynamic data were obtained before and 30 min after transfusion. The oxyhemoglobin dissociation curve shifted to the left (P(50) changed from 33.9 to 27.2 mm Hg), as mean red cell DPG decreased from 28.6 to 12.7 mumol/g of hemoglobin. No significant change was noted in pH, P(CO2), base deficit, arterial or venous percent saturation of hemoglobin, cardiac output, or oxygen consumption. However, a fall in mixed venous P(O2) from 35.3 to 27.9 mm Hg occurred.Thus, an acute shift of the oxyhemoglobin curve to the left was accompanied by a significant decrease in the mixed venous P(O2) without evidence of acidosis, decreased oxygen consumption, or a compensatory increase in cardiac output.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ann Intern Med. 1971 Jan;74(1):44-6 - PubMed
    1. J Appl Physiol. 1971 Dec;31(6):823-7 - PubMed
    1. J Pediatr. 1971 Dec;79(6):898-903 - PubMed
    1. J Appl Physiol. 1972 Jun;32(6):829-33 - PubMed
    1. Respir Physiol. 1969 Jun;7(1):7-29 - PubMed