Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Feb;54(2):110-9.
doi: 10.1139/o76-018.

Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay

Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay

J W Lown et al. Can J Biochem. 1976 Feb.

Abstract

The cytotoxic action of the antitumor antibiotic mitomycin C occurs primarily at the level of DNA. Using highly sensitive fluorescence assays which depend on the enhancement of ethidium fluorescence only when it intercalates duplex regions of DNA, three aspects of mitomycin C action on DNA have been studied: (a) cross-linking events, (b) alkylation without necessarily cross-linking, and (c) strand breakage. Cross-linking of DNA is determined by the return of fluorescence after a heat denaturation step at alkaline pH's. Under these conditions denatured DNA gives no fluorescence. The cross-linking was independently confirmed by S1-endonuclease (EC 3.1.4.-) digestion. At relatively high concentrations of mitomycin the suppression of ethidium fluorescence enhancement was shown not to be due to depurination but rather to alkylation, as a result of losses in potential intercalation sites. A linear relationship exists between binding ratio for mitomycin and loss of fluorescence. The proportional decrease in fluorescence with pH strongly suggests that the alkylation is due to the aziridine moiety of the antibiotic under these conditions. A parallel increase in the rate and overall efficiency of covalent cross-linking of DNA with lower pH suggests that the cross-linking event, to which the primary cytotoxic action has been linked, occurs sequentially with alkylation by aziridine and then by carbamate. Mitomycin C, reduced chemically, was shown to induce single strand cleavage as well as monoaklylation and covalent cross-linking in PM2 covalently closed circular DNA. The inhibition of this cleavage by superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6), and by free radical scavengers suggests that the degradation of DNA observed to accompany the cytotoxic action of mitomycin C is largely due to the free radical O2. In contrast to the behavior of the antibiotic streptonigrin, mitomycin C does not inactivate the protective enzymes superoxide dismutase or catalase. Lastly, mitomycin C is able to cross-link DNA in the absence of reduction at pH 4. This is consistent with the postulated cross-linking mechansims.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources